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Prehistory

In his article in the 1967 Cassels-Fröhlich volume on class field
theory, Swinnerton-Dyer reports on the famous calculations with
Birch concerning elliptic curves over Q.



Footnote

Y 2Z = X 3 − AXZ 2 − BZ 3, (1)

On page 284 there is the following footnote



Henri’s Question

Spring 1982: Henri Cohen visits Hendrik Lenstra in Amsterdam



Henri’s Question

How quickly can one compute the number of points on elliptic
curve modulo a prime p?



Hendrik’s answer

Let E be the elliptic curve with equation

Y 2 = X 3 + AX + B, over Fp.

Then the group of points E (Fp) is the class group of the ring
Fp[X ,Y ]/(Y 2 − X 3 − AX − B). This ring is the ring of integers of
the quadratic function field

Fp(X )(
√

X 3 + AX + B).

The class group can be computed with the same methods that one
uses for quadratic number fields. For instance, using Shanks’
baby-step-giant-step algorithm. Time O(p0.25).



A polynomial time algorithm

There exists a deterministic polynomial time algorithm to compute
the number of points on an elliptic curve E over Fp. The running
time is O(log8 p).



May 1982: a special case

Let E be the elliptic curve with equation

Y 2 = X 3 − X .

Then (−x , iy) is a point of E whenever (x , y) is. This means that
E admits complex multiplication by the ring Z[i ].

For p ≡ 3 (mod 4) we have #E (Fp) = p + 1.

For p ≡ 1 (mod 4) we have p = a2 + b2 and #E (Fp) = p +1− 2a.

Computing #E (Fp) ⇔ Computing a and b.

Note: a/b is the square root of −1 (mod p).



1980 CWI meeting



The 1982 preface



The 1982 preface



Number Theory day. Amsterdam, March 11, 1983
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November 1983. The 24th FOCS meeting



November 1983. The 24th FOCS meeting
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Send it to Williams . . .



Elliptic curve factoring

February 1985

Hendrik Lenstra explains his student Wieb Bosma that algorithms
that depend on properties of p − 1 have elliptic analogues.

LENSTRA BOSMA

Then he realizes that he has invented a new factoring algorithm . . .



The algorithm

Let E be an elliptic curve over Fp. The Frobenius endomorphism
ϕ ∈ End(E ) satisfies

ϕ2 − [t]ϕ + [p] = 0, in End(E ).

for some integer t satisfying |t| ≤ 2
√

p. The number of points in
E (Fp) is given by

#E (Fp) = p + 1− t.

The algorithm proceeds by checking the relation
ϕ2 − [t]ϕ + [p] = 0 on the `-torsion points E [`] for various small
primes `. In this way one obtains t (mod `). Then one applies the
Chinese Remainder Theorem.

See Karl Rubin: AMS Review 86e:11122.



The SEA algorithm

ATKIN ELKIES

The original algorithm computes the action of Frobenius on the
`-torsion points E [`] of E . This object is described by an
Fp-algebra of dimension `2. It is of interest to replace E [`] by
smaller objects.

This approach leads to a non-deterministic algorithm that is much
more efficient.

Subobjects: 1-dimensional eigenspaces of E [`] (Elkies 1986)

Quotient objects: the P1 of lines in E [`] (Atkin 1987)



2006 Record
The following result was posted by François Morain on
November 26, 2006.



p-adic methods

When q is a large power of a small prime p, there are better
methods to count the number of points on elliptic curves E
over Fq.

One computes the action of the Frobenius endomorphism on the
differentials rather than the groups E [`] of `-torsion points.

≥ 2000 Carls, Castryk, Denef, Fouquet, Gaudry, Gerkmann, Gürel,
Harley, Hubrechts, Kedlaya, Kohel, Lauder, Lercier , Lubicz,
Mestre, Satoh, Vercauteren, Wan . . .

and . . . Kato and Lubkin: Zeta matrices of elliptic curves, Journal
of Number Theory 15 (1982), 318–330.



Application to modular forms of weight 2

Let N ≥ 1 and let f be a normalized eigenform of weight 2 for the
group

Γ0(N) = {
(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)}.

Then f admits a Fourier expansion

f (τ) =
∞∑

n=1

a(n)qn, Im τ > 0,

where q = e2πiτ and a(1) = 1. We have

a(nm) = a(n)a(m), if gcd(n,m) = 1;

a(pr+1) = a(p)a(pr )− pa(pr−1), for r ≥ 1.



Application to modular forms of weight 2

If the Fourier coefficients ak of the weight 2 eigenform f are in Z,
there exists by Shimura an elliptic curve E over Q with the
property that for each prime p 6 |N, the number of points in E (Fp)
is given by p + 1− t with

t = ap.

Therefore, computing the Fourier coefficient ap of the modular
form f is the same as counting points on the elliptic curve E
over Fp.

When ak 6∈ Z, Shimura associates an abelian variety of dimension
> 1 to the modular form f . In this case one can use Pila’s
algorithm to compute the Fourier coefficients ap.



Example

There is a unique normalized eigenform of weight 2 for the
group Γ0(11). Its Fourier expansion is given by

f (τ) = q
∞∏

m=1

((1− qm)(1− q11m))2 =
∞∑

n=1

a(n)qn.

= q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + . . .

The elliptic curve associated to f by Shimura is

Y 2 + Y = X 3 − X 2.



Generalization

≈ 1997 Question raised by Cohen, Elkies, Schoof . . .

Can we generalize this to a polynomial time algorithm for modular
forms of weight larger than 2?

2005− 2010 Affirmative answer by Couveignes and Edixhoven
(and Bosman, De Jong, Merkl).

EDIXHOVEN COUVEIGNES



Ramanujan τ

The famous Ramanujan τ -function is defined by

∞∑
n=1

τ(n)qn = q
∞∏

m=1

(1− qm)24,

= q − 24q2 + 252q3 − 1472q4 + 4830q5 + . . .

It is a weight 12 modular form for the modular group SL2(Z).



Counting pointed cubic curves

THEOREM. Let n ≥ 1 and let p be a prime. Put

Fn(p) = #{(C ,P1, . . . ,Pn) : C is a smooth cubic in P2

and Pi ∈ C (Fp) for i = 1, . . . , n.}/#PGL3(Fp)

Then for n = 1, 2, . . . , 9 there is a polynomial fn so that

Fn(p) = fn(p).

On the other hand we have

F10(p) = −τ(p) + f10(p))

for some polynomial f10.



Counting pointed cubic curves

0. f0 = x ;

1. f1 = x2 + x ;

2. f2 = x3 + 3x2 + x − 1;

3. f3 = x4 + 6x3 + 6x2 − 2x − 3;

4. f4 = x5 + 10x4 + 20x3 + 4x2 − 14x − 74;

...

10. f10 = x11 +55x10 +825x9 +4905x8 +12870x7 +12264x6 + . . .



Ramanujan τ

Some properties

• τ(nm) = τ(n)τ(m), when gcd(n,m) = 1;

• τ(pk+1) = τ(p)τ(pk)− p11τ(pk−1), for k ≥ 1;

• τ(p) ≡ p + p4 (mod 7), for every prime p;
...

≡ 1 + p11 (mod 691), for every prime p;

• |τ(p)| ≤ 2p11/2, for every prime p.



Couveignes-Edixhoven

A deterministic polynomial time algorithm to compute τ(p).

The algorithm computes τ(p) modulo several small primes l and
then applies the Chinese Remainder Theorem.

For the special primes l = 2, 3, 5, 7, 23, 691 this can easily be done
using the classical congruences satisfied by the τ -function. For
l = 11 see below. For the other primes l this is harder.

Examples:

τ(101000 + 1357) ≡ ±4 (mod 19).

τ(101000 + 7383) ≡ ±2 (mod 19).

τ(101000 + 21567) ≡ ±3 (mod 19).

τ(101000 + 27057) ≡ 0 (mod 19).



Action of Frobenius

To compute τ(p), Couveignes and Edixhoven make use of a certain
2-dimensional F`-vector space V`. This is the analogue of the
2-dimensional space E [`] of `-torsion points of an elliptic curve E .

For several small primes ` they compute the action of the
Frobenius endomorphism ϕ on V`.

The characteristic polynomial of ϕ has the form

X 2 − tX + p11,

where
t ≡ τ(p) (mod `).



Etale cohomology

By Deligne (1969) the space V` is the 11-th étale cohomology
group of the 10-fold symmetric product E (10) of the universal
elliptic curve with values in Z/`Z.

V` = H11
et (E (10),Z/`Z)

which, somewhat more explicitly, is also equal to

V` = H1
et(P

1,F )

for some étale sheaf F .

This is the analogue of the 2-dimensional space of `-torsion points
of an elliptic curve.



Problem

The definition of the higher étale cohomology groups is very
abstract and, it seems, unsuitable for direct use in explicit
computations.

The first étale cohomology of a curve X with values in Z/`Z is
more explicit. It is the group of `-torsion points on the Jacobian
of X . It is a suitable object to do explicit computations with.

Couveignes and Edixhoven relate the group H11
et (E (10),Z/`Z) to

the cohomology group H1
et(X1(`),Z/`Z) of the modular

curve X1(`).



Congruences

For every prime number ` ≥ 11 there are congruences

τ(n) ≡ a(n) (mod `)

where a(n) are the Fourier coefficients of a normalized weight 2
eigenform for the modular group

Γ1(N) = {
(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)}

This means that for the 2-dimensional F`-vector space V` we have
the inclusion

V` ⊂ H1
et(X1(`),Z/`Z).

In other words, V` is a subspace of the `-torsion points of the
Jacobian J1(`) of the modular curve X1(`).



Example ` = 11.

For ` = 11, we have

τ(p) ≡ a(p) (mod 11), for all p 6= 11.

where a(p) is the Fourier coefficient of the weight 2 modular form

f (τ) = q
∞∏

m=1

((1− qm)(1− q11m))2 =
∞∑

n=1

a(n)qn

for the group Γ1(11) ⊂ Γ0(11).



Example ` = 11.

The Jacobian J1(11) is isogenous to the elliptic curve E

Y 2 − Y = X 3 − X 2,

associated to f by Shimura. Therefore we have

V11 = H1
et(X1(11),Z/11Z) = E [11]

and one can compute the characteristic polynomial of ϕ modulo 11
and hence τ(p) (mod 11) by determining the characteristic
polynomial

X 2 − [t]X + p

of the Frobenius endomorphism acting on E [11].



Problem

The genus g of the modular curve X1(`) is approximately

g ≈ `2

24
.

This implies that the Jacobian J1(`) of X1(`) is an abelian variety
of dimension `2/24. Therefore the vector space H1

et(X1(`),Z/`Z)
that contains V` satisfies

dimF`
H1

et(X1(`),Z/`Z) ≈ `2

12

and this becomes too large when ` grows.



Solution

Couveignes and Edixhoven work with the complex analytic
description of the Jacobian J1(`) as a complex torus. They then
“cut out” the 2-dimensional subspace V` inside the
`2/12-dimensional space H1

et(X1(`),Z/lZ) using Hecke operators
Tm for small m. In fact, V` is the intersection of sufficiently many
kernels of the endomorphisms Tm − am.

In order to control the size of the numbers and the accuracy that is
needed for the numerical calculations, they use Arakelov Theory.



2010 Book



2010 Thesis Peter Bruin

Couveignes and Edixhoven
actually have an algorithm that
can handle eigenforms for the full
modular group SL2(Z) of
arbitrary weight.

Recently this was generalized by
Peter Bruin to eigenforms for the
subgroups Γ1(N) of arbitrary
weight and arbitray level N.

BRUIN



Sums of squares

Bruin’s algorithm is probabilistic. Under the assumption of GRH it
runs in polynomial time.

An spin-off of Bruin’s algorithm is an algorithm to compute the
number of ways a prime number p can be written as the sum of m
squares

p = a2
1 + a2

2 + . . . + a2
m, with ai ∈ Z.

Here m should be even. This algorithm runs in time polynomial
in log p.

For even m, the number of ways n can be writtenas the sum of m
squares is the n-th Fourier coefficient of a modular form of
weight m/2.

For odd m there is no good algorithm.



Half integral weight

For negative d ≡ 0 or 1 modulo 4, let H(d) denote the Hurwitz
class number of the quadratic order of discriminant d .

Fourier series of the form ∑
n≥1

n≡a (mod b)

H(−n)qn

are modular forms of weight 3/2.

The theory of modular forms of half integral weight is rather
different from the theory that is concerned with modular forms of
integral weight.

It would be interesting to have an efficient algorithm to compute
Fourier coefficients of half integral weight.


