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Prehistory

Algebraic Number Theory

J. W.S. CASSELS

and

A. FROHLICH

In his article in the 1967 Cassels-Frohlich volume on class field

theory, Swinnerton-Dyer reports on the famous calculations with
Birch concerning elliptic curves over Q.



Footnote

CHAPTER XII

An Application of Computing to Class Field Theory

H. P. F. SWINNERTON-DYER

Y2Z = X3 - AXZ? - BZ3, (1)
On page 284 there is the following footnote

+ The naive way of calculating N is to set z = 1 in (1) and test all possible pairs x, y;
this would have taken O(p?) operations, and used more machine time than was justifiable.
But because (1) can be written as

P=w=x*—4x—B
it is only necessary to tabulate for each value of w the number of ways in which it is a

square; for each value of x one can then read off the number of solutions. In this way,
N, can be found after only O(p) operations.

u]
o)
I
i
it




Henri's Question

Spring 1982: Henri Cohen visits Hendrik Lenstra in Amsterdam




Henri's Question

How quickly can one compute the number of points on elliptic
curve modulo a prime p?



Hendrik's answer

Let E be the elliptic curve with equation
Y2=X*+AX+B,  overF,.

Then the group of points E(F) is the class group of the ring
F,[X, Y]/(Y? — X3 — AX — B). This ring is the ring of integers of
the quadratic function field

Fo(X)(V X3+ AX + B).

The class group can be computed with the same methods that one
uses for quadratic number fields. For instance, using Shanks’
baby-step-giant-step algorithm. Time O(p®25).



A polynomial time algorithm

There exists a deterministic polynomial time algorithm to compute
the number of points on an elliptic curve E over F,. The running
time is O(log® p).



May 1982: a special case

Let E be the elliptic curve with equation
Y?=X3-X.

Then (—x, iy) is a point of E whenever (x,y) is. This means that
E admits complex multiplication by the ring Z[i].

For p = 3 (mod 4) we have #E(F,) = p+ 1.
For p =1 (mod 4) we have p = a® + b and #E(F,) = p+1—2a.

Computing #E(F,) <  Computing a and b.

Note: a/b is the square root of —1 (mod p).
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The 1982 preface

INTRODUCTION

by

H.W. LENSTRA, JR.

This introductory lecture is devoted to a specific problem from compu-

tational number theory. The discussion will provide us with an opportunity
such that

to indicate which type of questions will be considered in the other lectures.

A classical theorem due to Fermat asserts that for every prime number
P with p = Imod 4 there exist integers x and y, unique up to order and sign,
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For example, the prime factor p = 1238926361552897 of 22%+ 1 discovered by
BRENT and POLLARD [2] can be written as

p= 255153042 + 242465592.

How were these values determined? More generally, given p, how does one

determine x and y in the most efficient way? That is the problem to be dis-

cussed in this lecture. Throughout p denotes a prime number that is 1mod 4.
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The 1982 preface

An improvement of theoretical value was recently obtained by SCHOOF
- [9], who showed without any unproved assumption that p = x +y2 can be

u =v -v (over Z/pZ) that we mentioned in connection with Jacobsthal's

lolyed in time 0((log p) ) His algorithm makes use of the elliptic curve

construction. It proceeds by investigating the action of the "Frobenius

automorphism" on the £-torsion points of the curve, for several small primes £.
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Number Theory day. Amsterdam, March 11, 1983
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November 1983. The 24th FOCS meeting
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~ Symposium on Foundations
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November 1983. The 24th FOCS meeting
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1983-1984 University of Maryland
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1983-1984 University of Maryland

Send it to Williams ...




Elliptic curve factoring

February 1985

Hendrik Lenstra explains his student Wieb Bosma that algorithms
that depend on properties of p — 1 have elliptic analogues.

LENSTRA BOSMA

Then he realizes that he has invented a new factoring algorithm . ..



The algorithm

Let E be an elliptic curve over F,. The Frobenius endomorphism
¢ € End(E) satisfies

©* —[tle+[p] =0,  inEnd(E).

for some integer t satisfying |t| < 2,/p. The number of points in
E(Fp) is given by
H#E(F,) = p+1—t.

The algorithm proceeds by checking the relation

©% — [t]e + [p] = 0 on the {-torsion points E[¢] for various small
primes £. In this way one obtains ¢t (mod ¢). Then one applies the
Chinese Remainder Theorem.

See Karl Rubin: AMS Review 86e:11122.



The SEA algorithm

v

ATKIN ELKIES

The original algorithm computes the action of Frobenius on the
(-torsion points E[(] of E. This object is described by an
F,-algebra of dimension 2. 1t is of interest to replace E[{] by
smaller objects.

This approach leads to a non-deterministic algorithm that is much
more efficient.

Subobjects: 1-dimensional eigenspaces of E[¢] (Elkies 1986)
Quotient objects: the P! of lines in E[¢] (Atkin 1987)



2006 Record

The

following result was posted by Francois Morain on

November 26, 2006.

The cardinality of the curve E: YAZ = XA3+4589*X+91128
modulo (p=10A2499+7131) is p+l-t with

t=

9029293237113248278694915077058747551669321573233883023678105812086157561659588340358
7757458661727734318982519448415619681585331873423864510100420795743119915223242448852
5932427536035601838709987345352419033712773474261605295745613934784827303221928196336
8357568573186063330859472313340463370165034764260993170876499703763557640712637346542
8616355302485606887472307765609707823873723492741304521358859651283907037798537461442
2323504527534082609192629061252451509422146798642464551179300480548711636004 743137665
7953293805586016188358341987968688933912932041213536620068401362096449335889632073987
4008808360720431678194354353012542038740450150529039200006849542739303291462422003323
9147926141945021241223435956792612595604566160438397578983792813602562001179824938400
4045008584520449871951575828394360571538638262212279062566082789503189389888533081257
8313993269694618112843725345911597786802582642529163013628536768647749494806629480269
9399895483583138776509529714472334869779930628984099436549103356974032706070675024311
4604748474652942090296113230374057634336407195747708572709834152984206107126756008468
8304449000961288194218319933301868961985076029228733382357896534019878760506896270894
77490717366754410230986360942010122625495852602530360613170

The timings on an AMD 64 Processor 3400+ (2.4GHz), with our NTL implementation,
(excluding the time for computing modular equations) is 404d

, primes took 61 days (not counting XAp mod PHI); isogeny cycles took 27 days.




p-adic methods

When q is a large power of a small prime p, there are better
methods to count the number of points on elliptic curves £
over Fg.

One computes the action of the Frobenius endomorphism on the
differentials rather than the groups E[{] of ¢-torsion points.

> 2000 Carls, Castryk, Denef, Fouquet, Gaudry, Gerkmann, Giirel,
Harley, Hubrechts, Kedlaya, Kohel, Lauder, Lercier , Lubicz,
Mestre, Satoh, Vercauteren, Wan . ..

and ... Kato and Lubkin: Zeta matrices of elliptic curves, Journal
of Number Theory 15 (1982), 318-330.



Application to modular forms of weight 2

Let N > 1 and let f be a normalized eigenform of weight 2 for the
group

Fo(N) = {(i Z) € SLy(Z) : ¢ =0 (mod N)}.

Then f admits a Fourier expansion

f(r) =Y a(n)g", Imr>0,

n=1
where g = €™ and a(1) = 1. We have
a(nm) = a(n)a(m), if ged(n, m) =1,

a(p’™) = a(p)a(p’) — pa(p’™"), forr>1.



Application to modular forms of weight 2

If the Fourier coefficients ax of the weight 2 eigenform f are in Z,
there exists by Shimura an elliptic curve E over Q with the
property that for each prime p fN, the number of points in E(F))
is given by p+ 1 — t with

t = ap.

Therefore, computing the Fourier coefficient a, of the modular
form f is the same as counting points on the elliptic curve E
over Fp.

When ax ¢ Z, Shimura associates an abelian variety of dimension
> 1 to the modular form f. In this case one can use Pila’s
algorithm to compute the Fourier coefficients ap.



Example

There is a unique normalized eigenform of weight 2 for the
group o(11). Its Fourier expansion is given by

fr) = a [L(@ - a7 = 3 a(n)
n=1

m=1
= q—-2¢°—¢®+2¢"+¢°+2¢° —2¢" + ...
The elliptic curve associated to f by Shimura is

Y21y = X3 - X2



Generalization

~ 1997 Question raised by Cohen, Elkies, Schoof ...

Can we generalize this to a polynomial time algorithm for modular
forms of weight larger than 27

2005 — 2010 Affirmative answer by Couveignes and Edixhoven
(and Bosman, De Jong, Merkl).

EDIXHOVEN COUVEIGNES




Ramanujan 7

The famous Ramanujan 7-function is defined by

e}

d r(n)g" = q [[@-q™*,

n=1 m=1

= q — 24¢° + 252q° — 1472q" + 4830q° + . ..

It is a weight 12 modular form for the modular group SLa(Z).



Counting pointed cubic curves

THEOREM. Let n > 1 and let p be a prime. Put
Fo(p) = #{(C, P1,...,P,) : Cis a smooth cubic in P2

and P; € C(Fp) for i =1,...,n.}/#PGL3(F,)

Then for n=1,2,...,9 there is a polynomial f, so that

Fa(p) = fa(p)-

On the other hand we have

Fio(p) = —7(p) + fio(p))

for some polynomial fig.



Counting pointed cubic curves

fo = x;

fi = x% + x;

fr=x343x2+x—1;
fy=x*+6x3+6x2—2x—3;

fa = x5 + 10x* + 20x3 4 4x2 — 14x — 74;

A 0= o

10. fip = x 1 455x10 4 825x° +4905x8 4+ 12870x7 4+ 12264x° + . ..



Ramanujan 7

Some properties

o 7(nm) = 7(n)T(m), when ged(n, m) =1,

o 7(p*TY) = 7(p)7(p*) — pMir(p*Y), for k> 1;

e 7(p) = p+ p* (mod 7), for every prime p;

=1+ p'! (mod 691), for every prime p;

o |7(p)| < 2p'/2, for every prime p.



Couveignes-Edixhoven

A deterministic polynomial time algorithm to compute 7(p).

The algorithm computes 7(p) modulo several small primes / and
then applies the Chinese Remainder Theorem.

For the special primes [ = 2,3,5,7,23,691 this can easily be done
using the classical congruences satisfied by the 7-function. For
| = 11 see below. For the other primes / this is harder.

Examples:
7(10%%% 1 1357) = 44 (mod 19).
7(10%9% 4 7383) = 42 (mod 19).
7(10%%% 1 21567) = 43 (mod 19).
7(10%0% 4 27057) 0 (mod 19).



Action of Frobenius

To compute 7(p), Couveignes and Edixhoven make use of a certain
2-dimensional Fy-vector space V;. This is the analogue of the
2-dimensional space E[{] of ¢-torsion points of an elliptic curve E.

For several small primes ¢ they compute the action of the
Frobenius endomorphism ¢ on V.

The characteristic polynomial of ¢ has the form
X2 _ tX + pll’

where
t = 7(p) (mod ¢).



Etale cohomology

By Deligne (1969) the space V; is the 11-th étale cohomology
group of the 10-fold symmetric product £(19) of the universal
elliptic curve with values in Z/(Z.
Vv, = HI(EW z/12)
which, somewhat more explicitly, is also equal to
Vf = H;t(PlvF)

for some étale sheaf F.

This is the analogue of the 2-dimensional space of /-torsion points
of an elliptic curve.



Problem

The definition of the higher étale cohomology groups is very
abstract and, it seems, unsuitable for direct use in explicit
computations.

The first étale cohomology of a curve X with values in Z/(Z is
more explicit. It is the group of /-torsion points on the Jacobian
of X. It is a suitable object to do explicit computations with.

Couveignes and Edixhoven relate the group HL(E(19),Z/1Z) to
the cohomology group HZ,(X1(¢),Z/¢Z) of the modular
curve Xi(¥).



Congruences

For every prime number £ > 11 there are congruences

7(n) = a(n) (mod /)

where a(n) are the Fourier coefficients of a normalized weight 2
eigenform for the modular group

M(N) = {<j Z) € SLy(2) - <i Z) - <(1) i) (mod M)}

This means that for the 2-dimensional F;-vector space V; we have
the inclusion
V, C HL(X1(0),Z/6Z).

In other words, V; is a subspace of the ¢-torsion points of the
Jacobian Ji(¢) of the modular curve Xi(¥).



Example ¢ = 11.

For ¢/ = 11, we have
7(p) = a(p) (mod 11), for all p # 11.

where a(p) is the Fourier coefficient of the weight 2 modular form
o0 [e.e]
= oIl - e = st
m=1 n=1

for the group I'1(11) C p(11).



Example ¢ = 11.

The Jacobian Ji(11) is isogenous to the elliptic curve E
YZ-vY = X3 - X3,
associated to f by Shimura. Therefore we have
Vii = Hg(Xi(11),Z/11Z) = E[11]

and one can compute the characteristic polynomial of ¢ modulo 11
and hence 7(p) (mod 11) by determining the characteristic
polynomial

X2 —[t]X +p

of the Frobenius endomorphism acting on E[11].



Problem

The genus g of the modular curve X;(¢) is approximately

€2

This implies that the Jacobian J1(¢) of Xi(¥) is an abelian variety
of dimension ¢2/24. Therefore the vector space HX (X1(¢),Z/¢Z)
that contains V; satisfies

62

dimg, HL(X1(¢),Z/(Z) ~ o

and this becomes too large when ¢ grows.



Solution

Couveignes and Edixhoven work with the complex analytic
description of the Jacobian J;(¢) as a complex torus. They then
“cut out” the 2-dimensional subspace V} inside the

2 /12-dimensional space HZ (X1(¢),Z/IZ) using Hecke operators
T for small m. In fact, Vj is the intersection of sufficiently many
kernels of the endomorphisms T,, — an.

In order to control the size of the numbers and the accuracy that is
needed for the numerical calculations, they use Arakelov Theory.



2010 Book

Computational aspects of
modular forms and Galois
representations

Jean-Marc Couveignes and
Bas Edixhoven, editors

PRINCETON UNIVERSITY PRESS



2010 Thesis Peter Bruin

Couveignes and Edixhoven
actually have an algorithm that
can handle eigenforms for the full
modular group SLy(Z) of
arbitrary weight.

Recently this was generalized by
Peter Bruin to eigenforms for the
subgroups I'1(N) of arbitrary
weight and arbitray level N.

BRUIN



Sums of squares

Bruin's algorithm is probabilistic. Under the assumption of GRH it
runs in polynomial time.

An spin-off of Bruin's algorithm is an algorithm to compute the
number of ways a prime number p can be written as the sum of m
squares

p=ai+as+... +a, with a; € Z.

Here m should be even. This algorithm runs in time polynomial
in log p.

For even m, the number of ways n can be writtenas the sum of m
squares is the n-th Fourier coefficient of a modular form of
weight m/2.

For odd m there is no good algorithm.



Half integral weight

For negative d = 0 or 1 modulo 4, let H(d) denote the Hurwitz
class number of the quadratic order of discriminant d.

Fourier series of the form

Y. H(=n)q"

n>1
n=a (mod b)

are modular forms of weight 3/2.

The theory of modular forms of half integral weight is rather
different from the theory that is concerned with modular forms of
integral weight.

It would be interesting to have an efficient algorithm to compute
Fourier coefficients of half integral weight.



