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I. History

Gauß, Abel, Eisentein, Kronecker, Klein, Weber, Watson,
Fueter, Takagi, Hasse, Deuring, Weil, Shimura, etc.

See Kronecker’s Jugendtraum and modular functions, by
S. G. Vlăduţ.

A new era

Schoof (1985):

I gives the first polynomial time deterministic algorithm for
computing #E(Fq), using O((log p)8) bit operations;

I for marketing reasons, he applies it to a known case,
thereby obtaining the striking result that

√
−1 mod p can

be computed in the same time.

I The same article contains this marvelous algorithm and
everything you need to understand CM theory!



A new era (cont’d)

The same year:
I H. W. Lenstra, Jr. invents ECM (soon implemented with

great successes);
I Bosma introduces elliptic Mersenne primes (for Z[i], Z[ρ]);
I Chudnovsky & Chudnovsky write an IBM report

investigating many aspects of elliptic curves over finite
fields.

1986:
I Primality proving: two independent threads

I Atkin proposes to use CM curves to get a usable primality
proving algorithm, tried with success on Cunningham
prp’s not proven by Cohen/Lenstra.

I Goldwasser & Kilian are close to proving isPrime? is in
RP (this is eventually done by Adleman & Huang using
hyperelliptic curves).

I Miller, Koblitz invent (independently) elliptic curve
cryptography.

A fundamental dichotomy

If you want to do ECC, then you need a curve. . . !

Two choices:

I look for a random curve E/Fp and compute its cardinality
(or other properties) using Schoof’s algorithms (and its
improvements); rather slow.

I build E as the reduction of some CM curve defined over
some KD; faster. You get #E, but do these CM properties
endanger the corresponding cryptosystems?

II. A review of the classical theory

Notations: D = m2DK where DK is the discriminant of an
imaginary quadratic field K; D is the discriminant of
O = [1, mω] where ZK = [1, ω]; h(O) = #Cl(O).

Ex. D = −12 · 4, K = Q(i), ZK = [1, i], h = 1, Cl = {(1, 0, 1)}.

Thm. 4p = U2 − DV2 iff p splits in the ring class field KD

(m = 1 corresponds to the Hilbert Class Field of K).

Thm. KD = K(j(mω)) where j is the modular invariant

j(z) =
1
x

+ 744 +
∑
n>0

cnxn

with x = exp(2iπz).

Algebraic theory

Write a = [α1, α2] and α = α1/α2; define j(a) = j(α).

Thm. KD/K is Galois, with group ∼ Cl(O) and therefore
[KD : K] = h(O). Moreover:

j(a)σ(i) = j(i−1a).

Thm. HD(X) =
∏

i∈Cl(O)(X − j(i)) ∈ Z[X].

Fundamental Thm. 4p = U2 − DV2 iff (D/p) = +1 and HD(X)
has h(O) roots modulo p.

Ex. 4p = U2 + 4V2 if and only if p = 2 or p ≡ 1 mod 4.

References: LNM 21, Serre, Cox, Cohn.



“Computing” KD

Computation of HD(X): write each class of Cl(O) as
i = [α1, α2] and evaluate j(α1/α2) as a multiprecision number.

Ex. H−3(X) = X, H−4(X) = X − 1728;

H−23(X) = X3 + 3491750 X2 − 5151296875 X + 12771880859375;

H−3×52(X) = X2 + 654403829760X + 5209253090426880.

⇒ p = x2 + y2 iff (−4/p) = +1;

4p = x2 + 3× 52y2 iff (−75/p) = +1 and H−3×52(X) factors
modulo p.

More on this later!

Elliptic curves with CM

Def. E/C has complex multiplication iff its ring of
endomorphisms is greater than Z (all [n] belong to End(E)).

Thm. E/C has CM iff End(E) ∼ O, an order in some imaginary
quadratic K.

Ex. E : Y2 = X3 + X has CM by Z[i].

Thm. E/C has CM iff j(E) is a root of HD(X) for some D.

Elliptic curves over finite fields

Thm. E/Fp has always CM (due to the Frobenius:
(X, Y) 7→ (Xp, Yp)).

Thm. (Hasse) #E(Fp) = p + 1− t, |t| ≤ 2
√

p.

Thm. (Deuring) given |t|, there exists E/Fp s.t. #E = p + 1− t,
obtainable as the reduction of E/KD modulo a factor of (p) in
KD, where D = t2 − 4p = mDK .

But:
I no general formula for #E except in some special cases

(small CM, E obtained by reduction).
I no efficient way for finding E given t except in some

special cases (CM again).

Rem. (Partially) generalizable to q = pn.

III. Using CM

A) A tribute to the pioneer

Thm. (Schoof)
√
−1 mod p can be computed in deterministic

polynomial time O((log p)8) (resp. Õ((log p)5)).

Proof: compute the cardinality of E : Y2 = X3 + X, which we
know is p + 1− 2u where p = u2 + v2. Deduce v and
−1 ≡ (u/v)2 mod p. �

Claim: we can improve this to O((log p)6) or Õ((log p)4).



Improving Schoof’s squareroot algorithm (1/2)

For E : Y2 = X3 + X, the splitting of the division polynomial f` is
given by CM theory:

I if ` ≡ 3 mod 4: f` is irreducible over Q(i).
I if ` ≡ 1 mod 4: f` has two eigenfactors of degree (`− 1)/2

over Q(i). Ex:

f5(X) = 5
(
X2 + 1/5 + 2/5 i

) (
X2 + 1/5− 2/5 i

)
×

(
X8 + 12 X6 − 26 X4 − 52 X2 + 1

)
.

Over Fp[T]/(T2 + 1): use fλ(X) = X2 + 1/5 + 2/5 i and look
for the eigenvalue 1 ≤ λ < `

(Xp, Yp) = [λ](X, Y)

in B` = Fp[X, Y, T]/(Y2 − (X3 + AX + B)), fλ(X, T), T2 + 1).

It has the flavor of Elkies’s algorithm. . . and a better complexity
(no modular polynomials needed).

Improving Schoof’s squareroot algorithm (2/2)
How do we compute fλ? write fλ(X) = f2+i(X) and use
Satoh’s generalized division polynomials, computable using
generalized recurrences (f2u+1±ω, etc.).

Equality test: gcd(ai(T)− bi(T), T2 + 1) for
a(X, T) =

∑
i ai(T)Xi, b(X, T) =

∑
i bi(T)Xi.

Ex. p = 241, ` = 5, E : Y2 = X3 + X:

fλ(X, T) = X2 + 193 + 145T,

Xp ≡ −X, Yp ≡ 177Y

[2](X, Y, 1) = (−X,−YT, 1)

and gcd(T2 + 1,−T − 177) = T + 177 (actually guessable from
the value of Yp).

This behaviour is very very very frequent: hard to find an
example where we must really compute t.

B) Primality proving

[...] I conceived and programmed the method (with me this is
one thing - I don’t “implement” myself anymore than I would
subcontract my algebra or analysis) in 3 months in the spring
of 1986.

ECPP in one slide

Idea: (Selfridge’s) DOWNRUN using CM elliptic curves.

One of the important parameters: a set D of (fundamental)
discriminants.

function ECPP(N , D)

• if N is small enough, prove its primality directly.

• repeat
find D ∈ D s.t. 4N = U2 − DV2

until m = N + 1− U = cN′ with c > 1 small, N′ probable
prime;

• build E as the reduction of an elliptic curve having CM over
Q, and find P of order m;

• return ECPP(N′, D).



ECPP (cont’d)

Complexity: (Lenstra & Lenstra, 1990) for
D = {|D| = O((log N)2)}, one gets a heuristic complexity

Õ( (log N)︸ ︷︷ ︸
number of steps

(log N)2︸ ︷︷ ︸
#D

(log N)2︸ ︷︷ ︸
√

D mod N

).

All other steps are in Õ((log N)4).

Output: a generalized Pratt certificate of size O((log N)2)
requiring Õ((log N)3) deterministic time to be checked.

A short history of ECPP
I First program of Atkin: up to 243 decimal digits (the

largest PRP in the Cunningham tables at that time).
I Original M. implementation (1987–1988): up to 500 dd

(cofactor of F11).
I Distribution of computations (1989): 1000dd.
I Problems: class polynomials ⇒ new smaller invariants
I Competition with PRIMO.
I AKS (and Dan Bernstein – 2003) caused renewed

interest in a faster version (J. Shallit, see LeLe90), never
implemented so far, using D = {q∗i1q∗i2 · · · q

∗
ir , 1 ≤ iu ≤ t} for

t = O(log N).

⇒ complexities of all phases are now (heuristically)
Õ((log N)4).

⇒ 10, 000 dd reached (Franke/Kleinjung/Wirth, 2003)

⇒ 15, 000 dd reached (Franke/Kleinjung/M./Wirth, 2004)

⇒ 20, 000 dd reached (M., 2006).

One step further
N = 67535122 + 51226753 (taken from P. Leyland’s tables) is a
25050-digit prime; gzipped certificate of 2024 steps has 55 Mb.

Calendar time: 2010/09/01 – 2010/10/15.

Machines: network of bi-core i7 quad-core; using open MPI.

what CPU days√
D 281

find (D, h) 199
Cornacchia 172

FKW 37
PRP 1005
HD 5

root HD 253
Step 1 1696
Step 2 282
Check 4.4

C) The independent life of the CM method

The sentence

• build E as the reduction of an elliptic curve having CM over
Q, and find P of order m;

has nothing to do with primality proving and can serve as a
building block in cryptography related things.

I Building cyclic elliptic curves (M. 1991);

I E of given cardinality (but varying p –
Bröker/Stevenhagen);

I Pairing friendly curves (see Freeman/Scott/Teske
taxonomy paper);

I EAKS (Couveignes/Ezome/Lercier).



Two slightly different contexts
I ECPP:

I probable prime N ≈ 230000;
I N to be proven prime, so more checks are necessary and

some tricks cannot be used;
I numerous D’s available, happy with 3 | D;
I #E proven by the succesful termination of the algorithm

on subsequent numbers;
I (very) few verifications of the certificate?

I Cryptography:
I prime p ≈ 2200;
I any parametrization of E possible;
I few D’s available, perhaps D ≡ 5 mod 8, and perhaps no

point of order 4 at all. . . ;
I #E often prime or almost prime;
I many verifications of the certificate?

In both cases, potentially large D’s or h’s (see later for large in
ECPP; pairing friendly curves have large requirements).

The CM method

INPUT:
I p (or q = pn);
I D < 0 (fundamental or not);
I U and V in Z s.t. p = (U2 − DV2)/4.

OUTPUT:
I E/Fp s.t. m = #E(Fp) = p + 1− U;
I a proof of correctness.

Rem.
I if U and V are not known, compute them using

Cornacchia’s algorithm;
I proof of correctness: might involve factoring m and

exhibiting generators of E/Fp; soft proof could be P s.t.
[m]P = OE but [m′]P 6= OE (m′ = p + 1 + U is the cardinality
of a twist E′ of E); in ECPP, proof is recursive.

The CM method (more precise)

INPUT:
I p (or q = pn);
I D < 0 (fundamental or not);
I U and V in Z s.t. p = (U2 − DV2)/4.

OUTPUT:
I E having CM by the order of discriminant D; as a

consequence E/Fp s.t. m = #E(Fp) = p + 1− U;
I a proof of correctness.

Rem. The proof of correctness could involve volcanoes.

Let’s open drawers
function CM(p, D, U, V)

1. Compute HD[j](X).
⇒ three methods for this! all in O(D1+ε): complex, p-adic,
CRT. See AEnge’s talk

2. Find a root j0 of HD[j](X) mod p.
⇒ use Galois theory + classical algorithms from computer
algebra

3. Find E of invariant j0:

Ec : Y2 = X3 +
3j0

1728− j0
c2X +

2j0
1728− j0

c3

where c accounts for twists of E.
⇒ Try only one curve (see Rubin/Silverberg when using j).

4. Prove that E has cardinality m = p + 1− U.
⇒ Use adequate parametrizations to check [m]P = OE.



IV. Modular curves and class invariants

Q. How do we find smaller defining polynomials for KD?

Two cases:
I construct KD: just need one minimal polynomial (Hajir,

etc.);
I build a CM curve: need some relation between f and j
⇐⇒ modular curves and replace j(α) by class invariants
f (α) for some modular function f .

Ex. (X + 16)3 − Xj = 0 is a modular equation for X0(2); its roots
are the classical Weber functions −f(α)24, f1(α)24 and f2(α)24.
For j(

√
−2) = 8000, one finds a root X = 26 = f1(

√
−2)24 which

is smaller.

A) Modular functions for Γ0(N) and class invariants

Γ0(N) =

{(
a b
c d

)
≡

(
∗ 0
∗ ∗

)
mod N

}
µ0(N) = [Γ : Γ0(N)] = N

∏
p|N

(1 + 1/p)

Def. f on H∗ is a modular function for Γ0(N) if and only if

∀M ∈ Γ0(N), z ∈ H∗, (f ◦M)(z) = f (Mz) = f (z)

(+ some technical conditions).

Thm. Let f be a function for Γ0(N), Γ/Γ0(N) = {γv}1≤v≤µ0(N).
Put

Φ[f ](X) =

µ0(N)∏
v=1

(X − f ◦ γv) =

µ0(N)∑
v=0

Rv(J)Xv

where Rv(J) ∈ C(J). Then Φ[f ](X, J) = 0 is called a modular
equation for Γ0(N).

Why do class invariants exist?

Thm. If f =
∑

anqn has integer coefficients,
Φ[f ](X, J) ∈ Z[X, J].

Coro. If j(τ) is an algebraic integer, so is f (τ).

⇒ if f (z) ∈ KD and we know its conjugates, we are done!

Shimura’s reciprocity law tells us when f (z) is in KD.

Use Schertz’s simplified formulation that also gives conjugates
of f (z).

What is a small invariant?

Def. H(P =
∑

(ai + biω)Xi) = log(max{|ai|, |bi|}).

Prop. (Hindry & Silverman)

H(f (z))
H(j(z))

=
degJ(Φ[f ])
degX(Φ[f ])

(1 + o(1)) = c(f )(1 + o(1)).

⇒ we have a measure for the size of f (z) w.r.t. j(z).

⇒ favor invariants with small degJ Φ[f ], e.g., degJ = 1 (i.e.,
g(X0(N)) = 0); degX Φ = µ0(N).

Asymptotically, c(f ) → 1/12, since degJ ≈ g ≈ µ0(N)/12.



B) Finding functions on Γ0(N)

B. Birch, Antwerp I.

To find differentials, there are various methods available:

(i) luck;
(ii) theta functions;
(iii) Eichler’s trace formula;
(iv) direct computation of the eigenvalues of the

Hecke operators, acting on the 1-dimensional
homology of H/G.

The luck part:
I Families (η-quotients: Enge/Schertz; Enge/M.; etc.);
I Elkies: X0(`

n) for many `’s.

Newman’s lemma
Lemma. If N > 1 and (rd) is a sequence of integers such that∑

d|N

rd = 0,

∑
d|N

drd ≡ 0 mod 24,
∑
d|N

N
d

rd ≡ 0 mod 24,

∏
d|N

drd = t2, t ∈ Q∗

then the function
g(z) =

∏
d|N

η(z/d)rd

is a modular function on Γ0(N).

η(z) = q1/24
∏
m≥1

(1− qm).

Coro. Any Newman function yields a class invariant.

The genus 0 case
NN = q1/N(1 + . . .) and degJ = 1, c(NN) = 1/µ0(N).

Two cases:
I use generalized Weber for N − 1 | 24:

Φ[w24
2 ](X, J) = (X + 16)3 − JX,

Φ[w12
3 ](X, J) = (X + 27)(X + 3)2 − JX,

Φ[w8
4](X, J) = (X2 + 16X + 16)3 − JX(X + 16),

I Klein, Fricke (with ηK = η(z/K)):

N NN 1/c(NN)

6 η5
6η
−1
3 η2η

−5
1 12

8 η4
8η
−2
4 η2

2η
−4
1 12

10 η3
10η

−1
5 η2η

−3
1 18

12 η3
12η

−2
6 η−1

4 η3η
2
2η
−3
1 24

16 η2
16η

−1
8 η2η

−2
1 24

18 η2
18η

−1
9 η−1

6 η3η2η
−2
1 36

What is the smallest invariant?
Extension of Enge+M. of ANTSV:

?
96,? > w2

72,1 > w4
48,1 > w2,73

37,6 > w2,97
147/4,8 > w9

36,1 = t
36,1

= A71
36,1 = w2

2
36,1 = N18

36,1 > w16
32,6 > w25

30,1 > w3,13
28,2 = w49

28,2

> w81
27,12 >

w112
132/5,5 > w132

26,7 >
w172

51/2,12 > w3,37
76/3,6 =

w192

76/3,15 > w3,61
124/5,10

> w5,7
24,2 = w3

2
24,1 = w2

6
24,6 = w2

4
24,1 = w2

3
24,1 · · ·

· · · > γ2
3,1 > γ3

2,1 > j
1,1

96: conjectured upper bound
(Selberg+Abramovich+Bröker/Stevenhagen)

j = γ
3
2 = γ

2
3 + 1728.

t: Ramanujan (Konstantinou/Kontogeorgis 08, Enge 08) for D ≡ 1 mod 12.



C) Using quotients of modular curves
(joint work in progress with É. Brier)

Goal: instead of using general families, look at each case and
find an optimal function/equation for these.

Natural candidates: quotients of X0(N) by a subgroup of
Aut(X0(N)) which is almost always = WN , the group of
Atkin-Lehner involutions.

Def. X∗0(N) = X0(N)/WN .

Prop. the “natural” modular equation for X∗0(N) will have
degree 2ω(N)(g∗0(N) + 1) (and a similar formula for any
intermediate quotient).

Caveat: for our purpose, we need some way of computing j
from the equation. We cannot be satisfied with equations for
modular curves coming out of the blue (in a lot of papers).

The prime case N = `

Fricke: all prime cases of genus 0.

Atkin’s functions for X∗0(`): the laundry method yields
(conjectured) minimal functions on X∗0(`).

We can turn these into class invariants and look at magical
constants:

` 71 131 191
1/c(f ) 36 33 32
degJ 2 4 6
g 0 2 3

Atkin’s legacy

B. Birch: As everyone knows, it has since been Oliver’s way to
make his work known by bush telegraph, via e-mail, or as
quoted by others; [...].

Atkin was able to recognize his functions as quotients of
“known” functions (private email).

Ex. A71 = (Θ2,1,9 −Θ4,3,5)/ηη71.

Θ(a, b, c, γ) =
∑
m,n

εγ(m, n)x(am2+bmn+cn2)/K

for some “code” γ (εγ = 1, K = 1 when ` ≡ 23 mod 24).

Shouldn’t we gather to webify some “Collected emails of
A. O. L. Atkin”?
Check my web page soon for the history of ECPP.

Gonzalez & Lario (1/2)

I Table of all quotients of small genera;

I give methods for computing the “final step” when X′ has
genus g′ and some w is s.t. X′/〈w〉 has small genus
(including 0);

I identify intermediate quadratic subfields predicted by
Galois theory.



Gonzalez & Lario (2/2)

N = p · q g wp wq wpq

6 = 2 · 3 0 0 0 0
10 = 2 · 5 0 0 0 0
14 = 2 · 7 1 1 0 0

· · ·
94 = 2 · 47 11 6 1 4
95 = 5 · 19 9 5 3 1
119 = 7 · 17 11 6 4 1

N = p · q · r g p, q p, r q, r p, qr q, pr pq, pr pqr
30 = 2 · 3 · 5 3 1 1 0 0 1 0 0
42 = 2 · 3 · 7 5 1 1 1 1 0 1 0
66 = 2 · 3 · 11 9 2 1 1 1 2 0 2
70 = 2 · 5 · 7 9 2 2 1 1 1 2 0
78 = 2 · 3 · 13 11 3 2 1 1 1 3 0
105 = 3 · 5 · 7 13 3 3 1 1 1 3 1
110 = 2 · 5 · 11 15 4 3 1 1 3 1 2

Magical constants

N c
6 12/4 = 3

· · ·
87 120/4 = 30
94 144/4 = 36
95 120/4 = 30
119 144/4 = 36

N c
30 72/8 = 9
42 32/8 = 4
66 40/8 = 5
70 40/8 = 5
78 40/8 = 5

105 192/8 = 24
110 216/8 = 27

N = 94

X∗0(47) has genus 0 and

A48 + (696− J)A47 + · · ·+ J2 + 216J + 230 = 0.

t47 =
Θ(1, 1, 12)−Θ(3, 1, 4)

ηη47
⇒ c(t47) = 24

r = t47(τ) + t47(2τ), s = t47(τ)t47(2τ)

t94(τ) =
s− 1
r − 1

= x−1 + x + x3 + x4 + x5 + x6 + . . .

j1 + j2 + j47 + j94 = T94 − 94T92 + · · · − 32327680T + 2528000

j1j2j47j94 = (T48 +248T47 +4324T46 + · · ·−12615680T +774400)3

c(t94) = 144/4 = 36

N = 30 (from Gonzalez)
X0(30) Q(r)(j) j2 − P1(r)

(r−1)30(r+1)10r5 j + P2(r)
(r−1)32(r+1)16r8 = 0

X0(30)/〈w15〉 Q(r) r =
η1η

2
6η

2
10η15

η2
2η3η5η2

30

X0(30)/〈w3, w15〉 Q(s) s = r − 1/r =
η1η3η5η15

η2η6η10η30

X∗0(30) Q(t) t = s + 4/s

r|w15 = r

r|w3 = −1/r ⇒ (s = r − 1/r)|w3 = s

s|w30 = 4/s ⇒ (t = s + 4/s)|w30 = t

Q(t, j) is the composition of three quadratic extensions of Q(t):
Q(t)(

√
t2 − 16), Q(t)(

√
t(t + 4)), Q(

√
(t + 5)(t + 1)).



95 and 119

Note that
t23 =

2Θ(2, 1, 3)− 1
ηη23

,

t47 =
Θ(1, 1, 12)−Θ(3, 1, 4)

ηη47
,

t71 =
Θ2,1,9 −Θ4,3,5

ηη71

are Hauptmoduln for the corresponding X∗0(`).

We can generalize Atkin’s approach for X∗0(95) and X∗0(119):

t95 =
Θ(4, 1, 6)−Θ(3, 1, 8)

2ηη95
,

t119 =
Θ(4, 3, 8)−Θ(5, 1, 6)

2ηη119
.

Summary of results

I We now have the best (conjectured) constants for all
(quotients of) modular curves of genus 0, plus some of
genus 1.

I We still need to identify optimal functions as quotients of
known functions, in case we need evaluate them.

I For ω(N) = ν, there are cases where HD(X) = G(X)ν ,
when N | D, N 6= D (see AEnge’s talk for other examples
and theorems). E.g.,

H420[t30](X) = (X − 9)8, H660[t110](X) = (X + 2)8.

I Open problem: is there an algorithm that computes
Θ(a, b, c) rapidly (as for the classical θ’s)?

Conclusions

I CM is everywhere and has many applications

I after 200 years of studies in genus 1, computations lead to
beautiful numbers, equations, etc.

I a lot of work is needed for the higher genus case, though
the theory exists. Since modular equations are difficult to
compute, trying to find class invariants is not as easily
doable yet.

I I haven’t told you everything on the subject, but stay tuned
for the other talks on these subjects!


