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Number Theory and Computation

Serge Lang

It is possible to write endlessly about Elliptic Curves – this is
not a threat!
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Number Theory and Computation

Solutions to Diophantine Equations

A lot of research in Mathematics has been motivated by hard, but easy to
state problems.
Famous example:

Fermat’s Last Theorem

xn + yn = zn.
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Number Theory and Computation

Computation versus Existence

Proving that something exists versus computing it efficiently.
With the availability of great computing resources, the quest for computing
mathematical objects, so prominent in the 19th century, has been revived.
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Elliptic Curves

A field that’s becoming more known

Studied intensively by number theorists for past 100 years.

Until recently fairly arcane.

Before 1985 – virtually unheard of in crypto and theoretical computer
science community.

In mathematical community: Mathematical Reviews has about 200
papers with “elliptic curve” in the title before 1984, but in all now has
about 2000.

A google search yield 83 pages of hits for the phrase “elliptic curve
cryptography”.
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Elliptic Curves

Elliptic Curves

Set of solutions (points) to an equation E : y2 = x3 + ax + b.

More generally any cubic curve – above is “Weierstrass Form”.

The set has a natural geometric group law, which also respects field
of definition – works over finite fields.

Weierstrass p function: p′2 = 4p3 − g2p− g3.

Only doubly-periodic complex function.
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Elliptic Curves

Chord and Tangent Process
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Elliptic Curves

Abelian Varieties

Multi-dimensional generalization of elliptic curves.

Dimension g has 2g periods.

Also has group law, which respects field of definition.

First studied by Abel (group is also abelian – a happy conincidence!).
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Elliptic Curves

Elliptic Curves over Rational Numbers

Set of solutions always forms a finitely generated group –
Mordell-Weil Theorem.

There is a procedure to find generators – very often quite efficient
(but not even known to terminate in many cases!).

Size function – “Weil height” – roughly measures number of bits in a
point.

Tate height – smoothing of height. Points form a lattice.
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Elliptic Curves

Louis Mordell, André Weil
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Elliptic Curves

Barry Mazur

No point on an elliptic curve over Q has order more than 12.
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Elliptic Curves

John Tate
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Elliptic Curves

Emil Artin and John von Neumann

In 1952 Emil Artin asked John von Neumann to do a calculation on the
ENIAC computer about cubic Gauss sums related to the distribution of the
number of points on y2 = x3 + 1 mod p.
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Elliptic Curves

Bryan Birch and Peter Swinnerton-Dyer

Birch and Swinnerton-Dyer formulated their important conjecture only
after extensive computer calculations.
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Elliptic Curves

Bryan Birch and Peter Swinnerton-Dyer
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Discrete Logarithms

The state of Number Theory

Number Theory is a beautiful garden
– Carl Ludwig Siegel

Oil was discovered in the garden. –
Hendrik W. Lenstra, Jr.
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Discrete Logarithms

Public Key

In 1976 Diffie and Hellman proposed the first public key protocol.

Let p be a large prime.

Non zero elements of Fp form cyclic group, g ∈ Fp a “primitive root”
– a generator.

Security dependent upon difficulty of solving:

DHP: Given p, g, ga and gb, find gab (note a and b are
not known.

Speculated: only good way to solve DHP is to solve:

DLP: Given p, g, ga, find a.

Soon generalized to work over any finite field – especially F2n .
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Discrete Logarithms

Marty Hellman and Whit Diffie
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Discrete Logarithms

Whit Diffie and Marty Hellman
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Discrete Logarithms

Attacks on DLP

Pohlig-Hellman – only need to solve problem in a cyclic group of
prime order – security depends on largest prime divisor q of p − 1 (or
of 2n − 1 for F2n).

Shanks “baby step giant step” in time O(
√

q). They speculated that
this was the best one could do.

A. E. Western, J. C. P. Miller in 1965, Len Adleman in 1978 –
heuristic algorithm in time

O(exp(
√

2 log p log log p)).

Hellman and Reynieri – similar for F2n with 2n replacing p in above.

Fuji-Hara, Blake, Mullin, Vanstone – a significant speed up of
Hellman and Reynieri.
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Discrete Logarithms

Dan Shanks
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Discrete Logarithms

Len Adleman
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Discrete Logarithms

My initiation into serious cryptography

Friend and colleague of Don Coppersmith since graduate school.

In 1983 Fuji-Hara gave talk at IBM, T. J. Watson Research Center
“How to rob a bank”, on work with Blake, Mullin and Vanstone.

The Federal Reserve Bank of California wanted to use DL over F2127

to secure sensitive transactions.

Hewlett-Packard starting manufacturing chips to do the protocol.

Fuji-Hara’s talk piqued Don’s interest.
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Discrete Logarithms

Don Coppersmith
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Discrete Logarithms

Ryoh Fuji-Hari, Ian Blake, Ron Mullin, Scott Vanstone
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Discrete Logarithms

Factoring, Factor Bases and Discrete Logarithms

Subexponential time factoring of integers.

CFRAC: Morrison and Brillhart. Brillhart coined the term “Factor
Base”

Rich Schroeppel – Linear Sieve

Carl Pomerance: coined the term “smooth”, the “quadratic sieve”
and the notation

Lx [a; b] := exp(b(log x)a(log log x)1−a).

From analyzing probability that a random integer factors into small
primes (“smooth”).
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Discrete Logarithms

John Brillhart
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Discrete Logarithms

Rich Schroeppel
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Discrete Logarithms

Carl Pomerance
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Discrete Logarithms

Coppersmith’s attack on DL over F2127

After Fuji-Hara’s talk, Don started thinking seriously about the DL
problem.

We would talk a few times a week about it – this taught me a lot
about the intricacies of the “index calculus” (coined by Odlyzko to
describe the family of algorithms).

The BFMV algorithm was still L[1/2] (with a better constant in the
exponential).

Don devised an L[1/3] algorithm for F2n .

Successfully attacked F2127 in seconds.

Ten years later Dan Gordon devised an L[1/3] algorithm for Fp.
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Discrete Logarithms

Dan Gordon
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Discrete Logarithms

Were Hellman and Pohlig right about discrete logarithms?

Yes, and no.

For original problem – no.

Needed to use specific property (“smoothness”) to make good
attacks work.

Nechaev (generalized by Shoup) showed that O(
√

q) was the best
that you could do for “black box groups”.

What about DHP? Maurer, and later Boneh and Lipton gave strong
evidence that it was no harder than DL (used elliptic curves!).
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Discrete Logarithms

Victor Shoup
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Discrete Logarithms

Ueli Maurer, Dan Boneh, Dick Lipton
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Enter Elliptic Curves

A New Idea

While I visted Andrew Odlyzko and Jeff Lagarias at Bell Labs in
August 1983, they showed me a preprint of a paper by René Schoof
giving a polynomial time algorithm for counting points on an elliptic
curve over Fp.

Shortly thereafter I saw a paper by Hendrik Lenstra (Schoof’s
advisor) which used elliptic curves to factor integers in time L[1/2].

This, combined with Don’s attack on DL over F2n got me to thinking
of using elliptic curves for DL.
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Enter Elliptic Curves

Andrew Odlyzko, Jeff Lagarias
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Enter Elliptic Curves

Rene Schoof

Victor S. Miller (CCR) Elliptic Curve Cryptography 18 Oct, 2010 38 / 73



Enter Elliptic Curves

Hendrik W. Lenstra, Jr.
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Enter Elliptic Curves

Diffie-Hellman in General Groups

Many people realized that DH protocol only needed associative
multiplication.

Some other protocols needed inverse. So one can do it in a group.

Why use another group?

Finite fields (mostly) have index calculus attacks.

Good candidate: algebraic groups – group law and membership given
by polynomial or rational functions.

Chevalley’s Theorem: algebraic groups are extensions of matrix
groups by abelian varieties (over finite fields).

Pohlig and Hellman: DL “lives” in either matrix group or abelian
variety.

Using eigenvalues – matrix group DL reduces to multiplicative group
DL in a small extension.
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Enter Elliptic Curves

Claude Chevalley
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Enter Elliptic Curves

Index Calculus

Given primitive root g of a prime p. Denote by x = logg (a), an
integer in [0, p − 1] satisfying g x = a.

Choose a factor base F = {p1, . . . , pk} first k primes.

Preprocess: find logg (pi ) for all pi ∈ F .

Individual log: use the table logg (pi ) to find logg (a).
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Enter Elliptic Curves

Some details: Preprocess

Preprocess: Choose random y ∈ Fp calculate z = g y (mod p), and
treat z as an integer.

See if z factors into the prime in F only.

If it does we have
z = pe1

1 . . . pek
k .

Reduce mod p and take logs:

y = e1 logg (p1) + · · ·+ ek logg (pk).

y and ei are known: get linear equation in unknowns logg (pi ).

When we have enough equations, solve for unknowns.
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Enter Elliptic Curves

Some details: Individual Logs

Individual Logs: Choose random y ∈ Fp calculate z = ag y (mod p),
and treat z as an integer.

See if z factors into the prime in F only.

If it does we have
z = pe1

1 . . . pek
k .

Reduce mod p and take logs:

logg (a) + y = e1 logg (p1) + · · ·+ ek logg (pk).

Using the values of logg (pi ) computed previously this gives answer.

Increasing k increases probability of success, but also increases size of
linear algebra problem. Optimal value yields time O(Lp[1/2; c]) for
some constant c .

Coppersmith and Gordon (NFS) use clever choice to get probability of
success up (plus a lot of difficult details).
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Enter Elliptic Curves

Factor Base for Elliptic Curves?

Given elliptic curve E over Fp, find Ẽ over Q which reduces mod p
to E .

Question: if P ∈ E (Fp) is random, how to find P̃ ∈ Ẽ (Q) which
reduces to P mod p?

Big qualitative difference – assuming various standard conjectures
(especially one by Serge Lang), one can show that the fraction of
points in Ẽ (Q) whose number of bits are polynomial in log p are
O((log log p)c) for some c .

Probability of succeeding in random guess is far too small.

Other advantage of Elliptic Curves: there are lots of them over Fp of
all different sizes ≈ p (also used by Lenstra in his factoring algorithm).
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Enter Elliptic Curves

Crypto ’85 and after

I corresponded with Odlyzko while forming my ideas.

The day that I finally convinced him, he reported receving a letter
from Neal Koblitz (who was in Moscow) also proposing using Elliptic
Curves for a Diffie-Hellman protocol.

At Crypto: the talk immediately preceding mine was given by Nelson
Stephens – an exposition of Lenstra’s factoring method. The audience
got a double dose of Elliptic Curves.

After my talk, Len Adleman and Kevin McCurley asked that I give
them an impromptu exposition about the theory of elliptic curves.

The next year Len, and Ming-Deh Huang asked that I give them a
similar talk about abelian varieties – lead to their random polynomial
time algorithm for primality proving.

Corresponded extensively with Burt Kaliski while he was working on
his thesis about elliptic curves. He was first to implement my
algorithm for the Weil pairing.
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Enter Elliptic Curves

Neal Koblitz
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Enter Elliptic Curves

Nelson Stephens
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Enter Elliptic Curves

Kevin McCurley
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Enter Elliptic Curves

Ming-Deh Huang
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Enter Elliptic Curves

Burt Kaliski
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Enter Elliptic Curves

A few weak cases

Menezes, Okamoto and Vanstone, using Weil pairing (see below) in a
case I missed – supersingular curves (more generally “low embedding
degree”).

Later by Frey and Rück using the Tate Pairing for curves with p − 1
points.

Nigel Smart, Igor Semaev, Takakazu Satoh and Kiyomichi Araki for
curves with p points.
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Enter Elliptic Curves

Alfred Menezes, Tatsuaki Okamoto, Scott Vanstone
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Enter Elliptic Curves

Gerhard Frey, Hans-Georg Rück
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Enter Elliptic Curves

Nigel Smart
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Enter Elliptic Curves

Primality proving

Goldwasser and Kilian – gave polynomial size certificate for primality
form almost all primes using elliptic curves.

Atkin and Morain – generalized this to all curves (fastest known
program for “titanic” primes)

In 2002 Agrawal, Kayal and Saxena gave a deterministic polynomial
time algorithm (not using elliptic curves).
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Enter Elliptic Curves

Shafi Goldwasser, Joe Kilian
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Enter Elliptic Curves

Oliver Atkin
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Enter Elliptic Curves

François Morain
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Enter Elliptic Curves

Manindra Agrawal, Neeraj Kayal, Nitin Saxena
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The Weil Pairing

Why compute the Weil Pairing?

Elliptic curve E/K , positive integer n, prime to char(K ).

A bilinear, alternating, galois equivariant, non-degenerate pairing
en : E [n]× E [n]→ µn.

It’s used in descent calculations (a procedure to find a basis of the
Mordell-Weil group).

In that case n is usually quite small.

What about when n is big?

Schoof: can calculate #E (Fp) quickly, what about the group
structure?
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The Weil Pairing

Elliptic Curves and the Multiplicative Group

In December 1984 I gave a talk at IBM about elliptic curve
cryptography.

Manuel Blum was in the audience, and challenged me to reduce
ordinary discrete logs to elliptic curve discrete logs.

Needed: an easily computable homomorphism from the multiplicative
group to the elliptic curve group.

The Weil pairing does relate them, if it could be computed quickly.

But it went the wrong way!

But – the degree of the extension field involved would almost always
be as big as p (thus completely infeasible).
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The Weil Pairing

The Algorithm for the Weil Pairing

Need to evaluate a function of very high degree at a selected point.

In theory could use linear algebra – but dimension would be far too
big – on the order of p.

Used the process of quickly computing a multiple of a point to give
an algorithm O(log p) operations in the field.

Wrote up paper in late 1985.

Widely circulated (and cited) as an unpublished manuscript.

Expanded verison published in 2004 in J. Cryptology.
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The Weil Pairing

Manuel Blum
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The Weil Pairing

Group Structure

As an abstract group E (Fp) ∼= Z/dZ× Z/deZ for some positive
integer d , e.

Given E/Fp find d and e.

By Schoof we can find d2e = #E (Fp) quickly.

Weil pairing lets us find d and e.

Above paper outlines how to do this.

Needs to factor gcd(p − 1,#E (Fp)).

Friedlander, Pomerance and Shparlinski analyze this latter problem.
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The Weil Pairing

Friedlander, Pomerance and Shparlinski
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Identity Based Encryption

The “Killer Application”?

In 1984 Adi Shamir proposed Identity Based Encryption – in which a
public identity (such as an email address) could be used as a public
key.

In 2000, Antoine Joux gave the first steps toward realizing this as an
efficient protocol using my Weil Pairing algorithm

In 2001, Boneh and Franklin, gave the first fully functional version –
also using the Weil pairing algorithm.

It is now a burgeoning subfield – with thousands of papers.
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Identity Based Encryption

Adi Shamir
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Identity Based Encryption

Antoine Joux
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Identity Based Encryption

Dan Boneh and Matt Franklin
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Uses in the “real world”

Applications

Elliptic Curve Cryptography is now used in many standards (IEEE,
NIST, etc.).

The NSA Information Assurance public web page has “The Case for
Elliptic Curve Cryptography”

Used in the Blackberry, Windows Media Player, standards for
biometric data on passports, U. S. Federal Aviation Administration
collision avoidance systems, and myriad others.
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Uses in the “real world”
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Uses in the “real world”

Alice and Bob
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