
ECC 2010 — Redmond, USA

Faster Implementation of Pairings

Francisco Rodŕıguez-Henŕıquez
CINVESTAV, IPN, Mexico City, Mexico

Joint work with:
Jean-Luc Beuchat LCIS, University of Tsukuba, Japan

Nicolas Brisebarre Arénaire, LIP, ÉNS Lyon, France
Jérémie Detrey Caramel, INRIA Nancy Grand-Est, France
Nicolas Estibals Caramel, INRIA Nancy Grand-Est, France
Jorge González-D́ıaz CINVESTAV, IPN, Mexico City, Mexico
Emmanuel López-Trejo Intel Guadalajara Design Center, Mexico
Luis Mart́ınez-Ramos CINVESTAV, IPN, Mexico City, Mexico
Shigeo Mitsunari Cybozu Labs, Inc., Tokyo, Japan
Eiji Okamoto LCIS, University of Tsukuba, Japan
Tadanori Teruya LCIS, University of Tsukuba, Japan

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (1 / 49)



Outline of the talk

1 Context

2 Hardware accelerator for the Tate pairing over supersingular curves

3 Software accelerator for the Tate pairing over supersingular curves

4 Optimal Ate Pairing over Barreto-Naehrig Curves

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (2 / 49)



Bilinear pairings

Let (G1, +), (G2, +) be two additively-written cyclic groups of prime order
#G1 = #G2 = `

(Gτ ,×), a multiplicatively-written cyclic group of order #Gτ = `

A non-degenerate bilinear pairing is a map

ê : G1 ×G2 → Gτ

that satisfies the following conditions:

I non-degeneracy: ê(P, P) 6= 1Gτ (equivalently ê(P, P) generates Gτ )
I bilinearity:

ê(Q1+Q2, R) = ê(Q1, R)·ê(Q2, R) ê(Q, R1+R2) = ê(Q, R1)·ê(Q, R2)
I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q, R)k1k2

When G1 = G2 we say that the pairing is symmetric, otherwise if G1 6= G2,
the pairing is asymmetric.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (3 / 49)



Bilinear pairings

Let (G1, +), (G2, +) be two additively-written cyclic groups of prime order
#G1 = #G2 = `

(Gτ ,×), a multiplicatively-written cyclic group of order #Gτ = `

A non-degenerate bilinear pairing is a map

ê : G1 ×G2 → Gτ

that satisfies the following conditions:

I non-degeneracy: ê(P, P) 6= 1Gτ
(equivalently ê(P, P) generates Gτ )

I bilinearity:
ê(Q1+Q2, R) = ê(Q1, R)·ê(Q2, R) ê(Q, R1+R2) = ê(Q, R1)·ê(Q, R2)

I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q, R)k1k2

When G1 = G2 we say that the pairing is symmetric, otherwise if G1 6= G2,
the pairing is asymmetric.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (3 / 49)



Bilinear pairings

Let (G1, +), (G2, +) be two additively-written cyclic groups of prime order
#G1 = #G2 = `

(Gτ ,×), a multiplicatively-written cyclic group of order #Gτ = `

A non-degenerate bilinear pairing is a map

ê : G1 ×G2 → Gτ

that satisfies the following conditions:

I non-degeneracy: ê(P, P) 6= 1Gτ
(equivalently ê(P, P) generates Gτ )

I bilinearity:
ê(Q1+Q2, R) = ê(Q1, R)·ê(Q2, R) ê(Q, R1+R2) = ê(Q, R1)·ê(Q, R2)

I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q, R)k1k2

When G1 = G2 we say that the pairing is symmetric, otherwise if G1 6= G2,
the pairing is asymmetric.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (3 / 49)



Bilinear pairings

Let (G1, +), (G2, +) be two additively-written cyclic groups of prime order
#G1 = #G2 = `

(Gτ ,×), a multiplicatively-written cyclic group of order #Gτ = `

A non-degenerate bilinear pairing is a map

ê : G1 ×G2 → Gτ

that satisfies the following conditions:

I non-degeneracy: ê(P, P) 6= 1Gτ
(equivalently ê(P, P) generates Gτ )

I bilinearity:
ê(Q1+Q2, R) = ê(Q1, R)·ê(Q2, R) ê(Q, R1+R2) = ê(Q, R1)·ê(Q, R2)

I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q, R)k1k2

When G1 = G2 we say that the pairing is symmetric, otherwise if G1 6= G2,
the pairing is asymmetric.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (3 / 49)



Bilinear pairings

Let (G1, +), (G2, +) be two additively-written cyclic groups of prime order
#G1 = #G2 = `

(Gτ ,×), a multiplicatively-written cyclic group of order #Gτ = `

A non-degenerate bilinear pairing is a map

ê : G1 ×G2 → Gτ

that satisfies the following conditions:

I non-degeneracy: ê(P, P) 6= 1Gτ
(equivalently ê(P, P) generates Gτ )

I bilinearity:
ê(Q1+Q2, R) = ê(Q1, R)·ê(Q2, R) ê(Q, R1+R2) = ê(Q, R1)·ê(Q, R2)

I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q, R)k1k2

When G1 = G2 we say that the pairing is symmetric, otherwise if G1 6= G2,
the pairing is asymmetric.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (3 / 49)



Bilinear pairings

Let (G1, +), (G2, +) be two additively-written cyclic groups of prime order
#G1 = #G2 = `

(Gτ ,×), a multiplicatively-written cyclic group of order #Gτ = `

A non-degenerate bilinear pairing is a map

ê : G1 ×G2 → Gτ

that satisfies the following conditions:

I non-degeneracy: ê(P, P) 6= 1Gτ
(equivalently ê(P, P) generates Gτ )

I bilinearity:
ê(Q1+Q2, R) = ê(Q1, R)·ê(Q2, R) ê(Q, R1+R2) = ê(Q, R1)·ê(Q, R2)

I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q, R)k1k2

When G1 = G2 we say that the pairing is symmetric, otherwise if G1 6= G2,
the pairing is asymmetric.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (3 / 49)



Bilinear pairings

Let (G1, +), (G2, +) be two additively-written cyclic groups of prime order
#G1 = #G2 = `

(Gτ ,×), a multiplicatively-written cyclic group of order #Gτ = `

A non-degenerate bilinear pairing is a map

ê : G1 ×G2 → Gτ

that satisfies the following conditions:

I non-degeneracy: ê(P, P) 6= 1Gτ
(equivalently ê(P, P) generates Gτ )

I bilinearity:
ê(Q1+Q2, R) = ê(Q1, R)·ê(Q2, R) ê(Q, R1+R2) = ê(Q, R1)·ê(Q, R2)

I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q, R)k1k2

When G1 = G2 we say that the pairing is symmetric, otherwise if G1 6= G2,
the pairing is asymmetric.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (3 / 49)



Pairings in cryptography

At first, used to attack supersingular elliptic curves
I Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

DLPG1 <P DLPGτ

kP −→ ê(kP, P) = ê(P, P)k

I for cryptographic applications, we will also require the DLP in Gτ to be
hard

One-round three-party key agreement (Joux, 2000)

Identity-based encryption
I Boneh–Franklin, 2001
I Sakai–Kasahara, 2001

Short digital signatures
I Boneh–Lynn–Shacham, 2001
I Zang–Safavi-Naini–Susilo, 2004

...

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (4 / 49)



Pairings in cryptography

At first, used to attack supersingular elliptic curves
I Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

DLPG1 <P DLPGτ

kP −→ ê(kP, P) = ê(P, P)k

I for cryptographic applications, we will also require the DLP in Gτ to be
hard

One-round three-party key agreement (Joux, 2000)

Identity-based encryption
I Boneh–Franklin, 2001
I Sakai–Kasahara, 2001

Short digital signatures
I Boneh–Lynn–Shacham, 2001
I Zang–Safavi-Naini–Susilo, 2004

...

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (4 / 49)



Pairings in cryptography

At first, used to attack supersingular elliptic curves
I Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

DLPG1 <P DLPGτ

kP −→ ê(kP, P) = ê(P, P)k

I for cryptographic applications, we will also require the DLP in Gτ to be
hard

One-round three-party key agreement (Joux, 2000)

Identity-based encryption
I Boneh–Franklin, 2001
I Sakai–Kasahara, 2001

Short digital signatures
I Boneh–Lynn–Shacham, 2001
I Zang–Safavi-Naini–Susilo, 2004

...

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (4 / 49)



Pairings in cryptography

At first, used to attack supersingular elliptic curves
I Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

DLPG1 <P DLPGτ

kP −→ ê(kP, P) = ê(P, P)k

I for cryptographic applications, we will also require the DLP in Gτ to be
hard

One-round three-party key agreement (Joux, 2000)

Identity-based encryption
I Boneh–Franklin, 2001
I Sakai–Kasahara, 2001

Short digital signatures
I Boneh–Lynn–Shacham, 2001
I Zang–Safavi-Naini–Susilo, 2004

...

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (4 / 49)



The Tate Pairing over Supersingular elliptic curves

We first define
I Fq, a finite field, with q = 2m or 3m

I E , an elliptic curve defined over Fq

I `, a large prime factor of #E (Fq)

G1 = E (Fq)[`], the Fq-rational `-torsion of E :

G1 = {P ∈ E (Fq) | `P = O}

Gτ = µ`, the group of `-th roots of unity in F×
qk :

Gτ = {U ∈ F×
qk | U` = 1}

k is the embedding degree, the smallest integer such that µ` ⊆ F×qk

I usually large for ordinary elliptic curves
I bounded in the case of supersingular elliptic curves

(4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (5 / 49)



The Tate Pairing over Supersingular elliptic curves

We first define
I Fq, a finite field, with q = 2m or 3m

I E , an elliptic curve defined over Fq

I `, a large prime factor of #E (Fq)

G1 = E (Fq)[`], the Fq-rational `-torsion of E :

G1 = {P ∈ E (Fq) | `P = O}

Gτ = µ`, the group of `-th roots of unity in F×
qk :

Gτ = {U ∈ F×
qk | U` = 1}

k is the embedding degree, the smallest integer such that µ` ⊆ F×qk

I usually large for ordinary elliptic curves
I bounded in the case of supersingular elliptic curves

(4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (5 / 49)



The Tate Pairing over Supersingular elliptic curves

We first define
I Fq, a finite field, with q = 2m or 3m

I E , an elliptic curve defined over Fq

I `, a large prime factor of #E (Fq)

G1 = E (Fq)[`], the Fq-rational `-torsion of E :

G1 = {P ∈ E (Fq) | `P = O}

Gτ = µ`, the group of `-th roots of unity in F×
qk :

Gτ = {U ∈ F×
qk | U` = 1}

k is the embedding degree, the smallest integer such that µ` ⊆ F×qk

I usually large for ordinary elliptic curves
I bounded in the case of supersingular elliptic curves

(4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (5 / 49)



The Tate Pairing over Supersingular elliptic curves

We first define
I Fq, a finite field, with q = 2m or 3m

I E , an elliptic curve defined over Fq

I `, a large prime factor of #E (Fq)

G1 = E (Fq)[`], the Fq-rational `-torsion of E :

G1 = {P ∈ E (Fq) | `P = O}

Gτ = µ`, the group of `-th roots of unity in F×
qk :

Gτ = {U ∈ F×
qk | U` = 1}

k is the embedding degree, the smallest integer such that µ` ⊆ F×qk

I usually large for ordinary elliptic curves
I bounded in the case of supersingular elliptic curves

(4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (5 / 49)



Security considerations for Symmetric Pairings

ê : E (Fpm)[`]× E (Fpm)[`]→ µ` ⊆ F×pkm

The discrete logarithm problem should be hard in both G1 and Gτ

Base field (Fpm) F2m F3m

Lower security (∼ 264) m = 239 m = 97

Medium security (∼ 280) m = 373 m = 163

Higher security (∼ 2128) m = 1103 m = 503

F2m : simpler finite field arithmetic

F3m : smaller field extension

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (6 / 49)



Security considerations for Symmetric Pairings

ê : E (Fpm)[`]× E (Fpm)[`]→ µ` ⊆ F×pkm

The discrete logarithm problem should be hard in both G1 and Gτ

Base field (Fpm) F2m F3m

Lower security (∼ 264) m = 239 m = 97

Medium security (∼ 280) m = 373 m = 163

Higher security (∼ 2128) m = 1103 m = 503

F2m : simpler finite field arithmetic

F3m : smaller field extension

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (6 / 49)



Computation of the Tate pairing
ê : E (Fpm)[`]× E (Fpm)[`]→ µ` ⊆ F×pkm

Arithmetic over Fpm :
I polynomial basis: Fpm ∼= Fp[x ]/(f (x))
I f (x), degree-m polynomial irreducible over Fp

Arithmetic over F×
pkm :

I tower-field representation
I only arithmetic over the underlying field Fpm

Operations over Fpm :
I O(m) additions / subtractions
I O(m) multiplications
I O(m) Frobenius maps (a 7→ ap, i.e. squarings or cubings)
I 1 inversion

A first idea: an all-in-one unified operator:
I shared resources
I scalable architecture

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (7 / 49)



Computation of the Tate pairing
ê : E (Fpm)[`]× E (Fpm)[`]→ µ` ⊆ F×pkm

Arithmetic over Fpm :
I polynomial basis: Fpm ∼= Fp[x ]/(f (x))
I f (x), degree-m polynomial irreducible over Fp

Arithmetic over F×
pkm :

I tower-field representation
I only arithmetic over the underlying field Fpm

Operations over Fpm :
I O(m) additions / subtractions
I O(m) multiplications
I O(m) Frobenius maps (a 7→ ap, i.e. squarings or cubings)
I 1 inversion

A first idea: an all-in-one unified operator:
I shared resources
I scalable architecture

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (7 / 49)



Computation of the Tate pairing
ê : E (Fpm)[`]× E (Fpm)[`]→ µ` ⊆ F×pkm

Arithmetic over Fpm :
I polynomial basis: Fpm ∼= Fp[x ]/(f (x))
I f (x), degree-m polynomial irreducible over Fp

Arithmetic over F×
pkm :

I tower-field representation
I only arithmetic over the underlying field Fpm

Operations over Fpm :
I O(m) additions / subtractions
I O(m) multiplications
I O(m) Frobenius maps (a 7→ ap, i.e. squarings or cubings)
I 1 inversion

A first idea: an all-in-one unified operator:
I shared resources
I scalable architecture

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (7 / 49)



Computation of the Tate pairing
ê : E (Fpm)[`]× E (Fpm)[`]→ µ` ⊆ F×pkm

Arithmetic over Fpm :
I polynomial basis: Fpm ∼= Fp[x ]/(f (x))
I f (x), degree-m polynomial irreducible over Fp

Arithmetic over F×
pkm :

I tower-field representation
I only arithmetic over the underlying field Fpm

Operations over Fpm :
I O(m) additions / subtractions
I O(m) multiplications
I O(m) Frobenius maps (a 7→ ap, i.e. squarings or cubings)
I 1 inversion

A first idea: an all-in-one unified operator:
I shared resources
I scalable architecture

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (7 / 49)



Computation of the Tate pairing
ê : E (Fpm)[`]× E (Fpm)[`]→ µ` ⊆ F×pkm

Arithmetic over Fpm :
I polynomial basis: Fpm ∼= Fp[x ]/(f (x))
I f (x), degree-m polynomial irreducible over Fp

Arithmetic over F×
pkm :

I tower-field representation
I only arithmetic over the underlying field Fpm

Operations over Fpm :
I O(m) additions / subtractions
I O(m) multiplications
I O(m) Frobenius maps (a 7→ ap, i.e. squarings or cubings)
I 1 inversion

A first idea: an all-in-one unified operator:
I shared resources
I scalable architecture

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (7 / 49)



Motivations

High speed is more important than low resources for some
cryptographic applications

Explore the other end of the area vs. time tradeoff:
I faster but larger than the unified operator
I what about the area-time product?

Accelerate the computation by extracting as much parallelism as
possible...

... Without increasing dramatically the resource requirements

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (8 / 49)



Motivations

High speed is more important than low resources for some
cryptographic applications

Explore the other end of the area vs. time tradeoff:
I faster but larger than the unified operator
I what about the area-time product?

Accelerate the computation by extracting as much parallelism as
possible...

... Without increasing dramatically the resource requirements

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (8 / 49)



Computation of the ηT pairing

The Tate pairing over E (Fpm) is computed in two main steps

ê(P, Q)

= ηT (P, Q)M

Computation of the ηT pairing
I via Miller’s algorithm: loop of (m + 1)/2 iterations
I result only defined modulo N-th powers in F×

pkm , with N = #E (Fpm )

Final exponentiation by M = (pkm − 1)/N
I required to obtain a unique value for each congruence class
I example in characteristic 3 (k = 6 and N = 3m + 1± 3(m+1)/2):

M =
36m − 1

3m + 1± 3(m+1)/2
=
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)
I exploit the special form of the exponent: ad-hoc algorithm

Two distinct computational requirements ⇒ use two distinct
coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (9 / 49)



Computation of the ηT pairing

The Tate pairing over E (Fpm) is computed in two main steps

ê(P, Q) = ηT (P, Q)

M

Computation of the ηT pairing
I via Miller’s algorithm: loop of (m + 1)/2 iterations
I result only defined modulo N-th powers in F×

pkm , with N = #E (Fpm )

Final exponentiation by M = (pkm − 1)/N
I required to obtain a unique value for each congruence class
I example in characteristic 3 (k = 6 and N = 3m + 1± 3(m+1)/2):

M =
36m − 1

3m + 1± 3(m+1)/2
=
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)
I exploit the special form of the exponent: ad-hoc algorithm

Two distinct computational requirements ⇒ use two distinct
coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (9 / 49)



Computation of the ηT pairing

The Tate pairing over E (Fpm) is computed in two main steps

ê(P, Q) = ηT (P, Q)M

Computation of the ηT pairing
I via Miller’s algorithm: loop of (m + 1)/2 iterations
I result only defined modulo N-th powers in F×

pkm , with N = #E (Fpm )

Final exponentiation by M = (pkm − 1)/N
I required to obtain a unique value for each congruence class
I example in characteristic 3 (k = 6 and N = 3m + 1± 3(m+1)/2):

M =
36m − 1

3m + 1± 3(m+1)/2
=
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)
I exploit the special form of the exponent: ad-hoc algorithm

Two distinct computational requirements ⇒ use two distinct
coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (9 / 49)



Computation of the ηT pairing

The Tate pairing over E (Fpm) is computed in two main steps

ê(P, Q) = ηT (P, Q)M

Computation of the ηT pairing
I via Miller’s algorithm: loop of (m + 1)/2 iterations
I result only defined modulo N-th powers in F×

pkm , with N = #E (Fpm )

Final exponentiation by M = (pkm − 1)/N
I required to obtain a unique value for each congruence class
I example in characteristic 3 (k = 6 and N = 3m + 1± 3(m+1)/2):

M =
36m − 1

3m + 1± 3(m+1)/2
=
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)
I exploit the special form of the exponent: ad-hoc algorithm

Two distinct computational requirements ⇒ use two distinct
coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (9 / 49)



Computation of the ηT pairing

The Tate pairing over E (Fpm) is computed in two main steps

ê(P, Q) = ηT (P, Q)M

Computation of the ηT pairing
I via Miller’s algorithm: loop of (m + 1)/2 iterations
I result only defined modulo N-th powers in F×

pkm , with N = #E (Fpm )

Final exponentiation by M = (pkm − 1)/N
I required to obtain a unique value for each congruence class
I example in characteristic 3 (k = 6 and N = 3m + 1± 3(m+1)/2):

M =
36m − 1

3m + 1± 3(m+1)/2
=
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)
I exploit the special form of the exponent: ad-hoc algorithm

Two distinct computational requirements ⇒ use two distinct
coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (9 / 49)



Computation of the ηT pairing

The Tate pairing over E (Fpm) is computed in two main steps

ê(P, Q) = ηT (P, Q)M

Computation of the ηT pairing
I via Miller’s algorithm: loop of (m + 1)/2 iterations
I result only defined modulo N-th powers in F×

pkm , with N = #E (Fpm )

Final exponentiation by M = (pkm − 1)/N
I required to obtain a unique value for each congruence class
I example in characteristic 3 (k = 6 and N = 3m + 1± 3(m+1)/2):

M =
36m − 1

3m + 1± 3(m+1)/2
=
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)
I exploit the special form of the exponent: ad-hoc algorithm

Two distinct computational requirements

⇒ use two distinct
coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (9 / 49)



Computation of the ηT pairing

The Tate pairing over E (Fpm) is computed in two main steps

ê(P, Q) = ηT (P, Q)M

Computation of the ηT pairing
I via Miller’s algorithm: loop of (m + 1)/2 iterations
I result only defined modulo N-th powers in F×

pkm , with N = #E (Fpm )

Final exponentiation by M = (pkm − 1)/N
I required to obtain a unique value for each congruence class
I example in characteristic 3 (k = 6 and N = 3m + 1± 3(m+1)/2):

M =
36m − 1

3m + 1± 3(m+1)/2
=
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)
I exploit the special form of the exponent: ad-hoc algorithm

Two distinct computational requirements ⇒ use two distinct
coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (9 / 49)



Reduced Tate pairing

Reduced Tate pairing

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

F
×
36m

algorithm)

Non-reduced
pairing

(iterative (irregular

exponentiation

computation)

Final

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

Non-reduced
pairing

(iterative
computation)

(irregular

exponentiation
Final

algorithm)

Input: two points P and Q in E (F3m)[`]

Output: an `-th root of unity in the extension F×
36m

Two very different steps

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (10 / 49)



Reduced Tate pairing

Reduced Tate pairing

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

F
×
36m

algorithm)

Non-reduced
pairing

(iterative (irregular

exponentiation

computation)

Final

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

Non-reduced
pairing

(iterative
computation)

(irregular

exponentiation
Final

algorithm)

Input: two points P and Q in E (F3m)[`]

Output: an `-th root of unity in the extension F×
36m

Two very different steps

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (10 / 49)



Reduced Tate pairing

Reduced Tate pairing

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

F
×
36m

algorithm)

Non-reduced
pairing

(iterative (irregular

exponentiation

computation)

Final

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

Non-reduced
pairing

(iterative
computation)

(irregular

exponentiation
Final

algorithm)

Input: two points P and Q in E (F3m)[`]

Output: an `-th root of unity in the extension F×
36m

Two very different steps

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (10 / 49)



Reduced Tate pairing

Reduced Tate pairing

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

F
×
36m

algorithm)

Non-reduced
pairing

(iterative (irregular

exponentiation

computation)

Final

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

Non-reduced
pairing

(iterative
computation)

(irregular

exponentiation
Final

algorithm)

Input: two points P and Q in E (F3m)[`]

Output: an `-th root of unity in the extension F×
36m

Two very different steps

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (10 / 49)



Reduced Tate pairing

Reduced Tate pairing

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

F
×
36m

algorithm)

Non-reduced
pairing

(iterative

(irregular

exponentiation

computation)

Final

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

Non-reduced
pairing

(iterative
computation)

(irregular

exponentiation
Final

algorithm)

Input: two points P and Q in E (F3m)[`]

Output: an `-th root of unity in the extension F×
36m

Two very different steps

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (10 / 49)



Reduced Tate pairing

Reduced Tate pairing

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

F
×
36m

algorithm)

Non-reduced
pairing

(iterative (irregular

exponentiation

computation)

Final

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

Non-reduced
pairing

(iterative
computation)

(irregular

exponentiation
Final

algorithm)

Input: two points P and Q in E (F3m)[`]

Output: an `-th root of unity in the extension F×
36m

Two very different steps

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (10 / 49)



Reduced Tate pairing

Reduced Tate pairing

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

F
×
36m

algorithm)

Non-reduced
pairing

(iterative (irregular

exponentiation

computation)

Final

E (F3m)[`]

E (F3m)[`]

µ` ⊆ F
×
36m

Non-reduced
pairing

(iterative
computation)

(irregular

exponentiation
Final

algorithm)

Input: two points P and Q in E (F3m)[`]

Output: an `-th root of unity in the extension F×
36m

Two very different steps

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (10 / 49)



Two coprocessors for the ηT pairing

The two operations are purely sequential

Only one active coprocessor at every moment

Pipeline the data between the two coprocessors
I both of them are kept busy
I higher throughput

Balance the computation time between the two coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (11 / 49)



Two coprocessors for the ηT pairing

The two operations are purely sequential

Only one active coprocessor at every moment

Pipeline the data between the two coprocessors

I both of them are kept busy
I higher throughput

Balance the computation time between the two coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (11 / 49)



Two coprocessors for the ηT pairing

The two operations are purely sequential

Only one active coprocessor at every moment

Pipeline the data between the two coprocessors
I both of them are kept busy
I higher throughput

Balance the computation time between the two coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (11 / 49)



Two coprocessors for the ηT pairing

The two operations are purely sequential

Only one active coprocessor at every moment

Pipeline the data between the two coprocessors
I both of them are kept busy
I higher throughput

Balance the computation time between the two coprocessors

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (11 / 49)



ηT pairing algorithm

ηT : E (F3m)[`]× E (F3m)[`]→ F
×
36m

Three tasks per iteration:
À update the coordinates
Á compute the line equation
Â accumulate the new factor

Total cost: 17×, 4 Frobenius/inverse Frobenius and 30 + over F3m

Cost of the inverse Frobenius: Same as the Frobenius

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (12 / 49)



ηT pairing algorithm

ηT : E (F3m)[`]× E (F3m)[`]→ F
×
36m

Three tasks per iteration:
À update the coordinates
Á compute the line equation
Â accumulate the new factor

Total cost: 17×, 4 Frobenius/inverse Frobenius and 30 + over F3m

Cost of the inverse Frobenius: Same as the Frobenius

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (12 / 49)



Accelerating the ηT pairing
Total cost: 17×, 2 Frobenius and inverse Frobenius and 30 + over
F3m per iteration

I Frobenius/inverse Frobenius and +: cheap and fast operations

I critical operation: ×
Need for a fast parallel multiplier: Karatsuba

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (13 / 49)



Accelerating the ηT pairing
Total cost: 17×, 2 Frobenius and inverse Frobenius and 30 + over
F3m per iteration

I Frobenius/inverse Frobenius and +: cheap and fast operations
I critical operation: ×

Need for a fast parallel multiplier: Karatsuba

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (13 / 49)



Accelerating the ηT pairing
Total cost: 17×, 2 Frobenius and inverse Frobenius and 30 + over
F3m per iteration

I Frobenius/inverse Frobenius and +: cheap and fast operations
I critical operation: ×

Need for a fast parallel multiplier: Karatsuba

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (13 / 49)



A parallel Karatsuba multiplier

I fully parallel: all sub-products are computed in parallel
I pipelined architecture: higher clock frequency, one product per cycle

I sub-products recursively implemented as Karatsuba-Ofman multipliers
I support for other variants: odd-even split, 3-way split, ...
I final reduction modulo the irreducible polynomial f

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (14 / 49)



A parallel Karatsuba multiplier

I fully parallel: all sub-products are computed in parallel
I pipelined architecture: higher clock frequency, one product per cycle
I sub-products recursively implemented as Karatsuba-Ofman multipliers

I support for other variants: odd-even split, 3-way split, ...
I final reduction modulo the irreducible polynomial f

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (14 / 49)



A parallel Karatsuba multiplier

I fully parallel: all sub-products are computed in parallel
I pipelined architecture: higher clock frequency, one product per cycle
I sub-products recursively implemented as Karatsuba-Ofman multipliers
I support for other variants: odd-even split, 3-way split, ...

I final reduction modulo the irreducible polynomial f

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (14 / 49)



A parallel Karatsuba multiplier

I fully parallel: all sub-products are computed in parallel
I pipelined architecture: higher clock frequency, one product per cycle
I sub-products recursively implemented as Karatsuba-Ofman multipliers
I support for other variants: odd-even split, 3-way split, ...
I final reduction modulo the irreducible polynomial f

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (14 / 49)



Accelerating the ηT pairing

ηT coprocessor based on a single large multiplier:
I parallel Karatsuba architecture
I 7-stage pipeline
I one product per cycle

Challenge: keep the multiplier busy at all times

Careful scheduling to avoid pipeline bubbles (idle cycles):
I ensure that multiplication operands are always available
I avoid memory congestion issues

We managed to accomplish that: our processor computes Miller loop
in just 17 · (m + 3)/2 clock cycles (considering the initialization phase)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (15 / 49)



Accelerating the ηT pairing

ηT coprocessor based on a single large multiplier:
I parallel Karatsuba architecture
I 7-stage pipeline
I one product per cycle

Challenge: keep the multiplier busy at all times

Careful scheduling to avoid pipeline bubbles (idle cycles):
I ensure that multiplication operands are always available
I avoid memory congestion issues

We managed to accomplish that: our processor computes Miller loop
in just 17 · (m + 3)/2 clock cycles (considering the initialization phase)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (15 / 49)



Accelerating the ηT pairing

ηT coprocessor based on a single large multiplier:
I parallel Karatsuba architecture
I 7-stage pipeline
I one product per cycle

Challenge: keep the multiplier busy at all times

Careful scheduling to avoid pipeline bubbles (idle cycles):
I ensure that multiplication operands are always available
I avoid memory congestion issues

We managed to accomplish that: our processor computes Miller loop
in just 17 · (m + 3)/2 clock cycles (considering the initialization phase)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (15 / 49)



A parallel operator for the ηT pairing

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (16 / 49)



The final exponentiation

Compute ê(P, Q) as ηT (P, Q)M with ηT (P, Q) ∈ F×
36m and

M =
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)

Operations over F3m : 73×, 3m + 3 Frobenius, 3m + 175 +, and 1
inversion (∼ log m× and m − 1 Frobenius)

Cost of the ηT pairing:
I (m + 1)/2 iterations
I 17×, 10 Frobenius and 30 + over F3m per iteration

The final exponentiation is much cheaper than the ηT pairing

Challenge for the final exponentiation:
I computation in the same time as the ηT pairing
I ... using as few resources as possible

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (17 / 49)



The final exponentiation

Compute ê(P, Q) as ηT (P, Q)M with ηT (P, Q) ∈ F×
36m and

M =
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)

Operations over F3m : 73×, 3m + 3 Frobenius, 3m + 175 +, and 1
inversion

(∼ log m× and m − 1 Frobenius)

Cost of the ηT pairing:
I (m + 1)/2 iterations
I 17×, 10 Frobenius and 30 + over F3m per iteration

The final exponentiation is much cheaper than the ηT pairing

Challenge for the final exponentiation:
I computation in the same time as the ηT pairing
I ... using as few resources as possible

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (17 / 49)



The final exponentiation

Compute ê(P, Q) as ηT (P, Q)M with ηT (P, Q) ∈ F×
36m and

M =
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)

Operations over F3m : 73×, 3m + 3 Frobenius, 3m + 175 +, and 1
inversion (∼ log m× and m − 1 Frobenius)

Cost of the ηT pairing:
I (m + 1)/2 iterations
I 17×, 10 Frobenius and 30 + over F3m per iteration

The final exponentiation is much cheaper than the ηT pairing

Challenge for the final exponentiation:
I computation in the same time as the ηT pairing
I ... using as few resources as possible

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (17 / 49)



The final exponentiation

Compute ê(P, Q) as ηT (P, Q)M with ηT (P, Q) ∈ F×
36m and

M =
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)

Operations over F3m : 73×, 3m + 3 Frobenius, 3m + 175 +, and 1
inversion (∼ log m× and m − 1 Frobenius)

Cost of the ηT pairing:
I (m + 1)/2 iterations
I 17×, 10 Frobenius and 30 + over F3m per iteration

The final exponentiation is much cheaper than the ηT pairing

Challenge for the final exponentiation:
I computation in the same time as the ηT pairing
I ... using as few resources as possible

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (17 / 49)



The final exponentiation

Compute ê(P, Q) as ηT (P, Q)M with ηT (P, Q) ∈ F×
36m and

M =
(
33m − 1

)
(3m + 1)

(
3m + 1∓ 3(m+1)/2

)

Operations over F3m : 73×, 3m + 3 Frobenius, 3m + 175 +, and 1
inversion (∼ log m× and m − 1 Frobenius)

Cost of the ηT pairing:
I (m + 1)/2 iterations
I 17×, 10 Frobenius and 30 + over F3m per iteration

The final exponentiation is much cheaper than the ηT pairing

Challenge for the final exponentiation:
I computation in the same time as the ηT pairing
I ... using as few resources as possible

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (17 / 49)



The final exponentiation

Design the smallest architecture possible supporting all the required
operations over F3m

purely sequential scheduling

Although some parallelism is required.

We found out that the usage of the inverse Frobenius operator is
advantageous for computing the final exponentiation (as long as the
irreducible polynomials are inverse-Frobenius friendly)

New coprocessor with two arithmetic units:
I a standalone multiplier, based on a parallel-serial scheme
I a unified operator supporting addition/subtraction, inverse Frobenius

map and inverse double Frobenius map

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (18 / 49)



The final exponentiation

Design the smallest architecture possible supporting all the required
operations over F3m

purely sequential scheduling

Although some parallelism is required.

We found out that the usage of the inverse Frobenius operator is
advantageous for computing the final exponentiation (as long as the
irreducible polynomials are inverse-Frobenius friendly)

New coprocessor with two arithmetic units:
I a standalone multiplier, based on a parallel-serial scheme
I a unified operator supporting addition/subtraction, inverse Frobenius

map and inverse double Frobenius map

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (18 / 49)



The final exponentiation

Design the smallest architecture possible supporting all the required
operations over F3m

purely sequential scheduling

Although some parallelism is required.

We found out that the usage of the inverse Frobenius operator is
advantageous for computing the final exponentiation (as long as the
irreducible polynomials are inverse-Frobenius friendly)

New coprocessor with two arithmetic units:
I a standalone multiplier, based on a parallel-serial scheme
I a unified operator supporting addition/subtraction, inverse Frobenius

map and inverse double Frobenius map

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (18 / 49)



The final exponentiation

Design the smallest architecture possible supporting all the required
operations over F3m

purely sequential scheduling

Although some parallelism is required.

We found out that the usage of the inverse Frobenius operator is
advantageous for computing the final exponentiation (as long as the
irreducible polynomials are inverse-Frobenius friendly)

New coprocessor with two arithmetic units:
I a standalone multiplier, based on a parallel-serial scheme
I a unified operator supporting addition/subtraction, inverse Frobenius

map and inverse double Frobenius map

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (18 / 49)



A coprocessor for the final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (19 / 49)



Agenda

1 Context

2 Hardware accelerator for the Tate pairing over supersingular curves
Implementation Results in Hardware

3 Software accelerator for the Tate pairing over supersingular curves
Computing the non-reduced pairing
Final exponentiation
Implementation results

4 Optimal Ate Pairing over Barreto-Naehrig Curves
Barreto–Naehrig Curves

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (20 / 49)



Hardware accelerators

10

100

1000

60 65 70 75 80 85 90 95 100 105 110

Security [bits]

Calculation time [µs]

Virtex-II
Pro

Virtex-4 LX

6.2 µs / F397

12.8 µs / F3193

16.9 µs / F3313

20.9 µs / F397

100.8 µs / F2457

675.5 µs / F2557

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (21 / 49)



Hardware implementation notes

Our Xilinx FPGA implementation, significantly improved the
computation time of all the hardware pairing coprocessors for
supersingular curves previously published

(a bit Surprisingly) our architecture also enjoys the best area/time
trade-off performance among supersingular pairing accelerators

However, because we exceeded the FPGA’s capacity, we could only
achieve up to 109 bits of security

Although it was not discussed here, we also implemented the Tate
pairing over char 2. Experimentally, we observed that our char 2 and
char 3 accelerators achieve almost the same time performance

In the design process of our char 2 accelerator we found the following
undocumented family of square-root friendly irreducible pentanomials:
f (x) = xm + xm−d + xm−2d + xd + 1.

all technical details of these designs can be found in the preprint
manuscripts eprint 2009/122 and eprint 2009/398

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (22 / 49)



Hardware implementation notes

Our Xilinx FPGA implementation, significantly improved the
computation time of all the hardware pairing coprocessors for
supersingular curves previously published

(a bit Surprisingly) our architecture also enjoys the best area/time
trade-off performance among supersingular pairing accelerators

However, because we exceeded the FPGA’s capacity, we could only
achieve up to 109 bits of security

Although it was not discussed here, we also implemented the Tate
pairing over char 2. Experimentally, we observed that our char 2 and
char 3 accelerators achieve almost the same time performance

In the design process of our char 2 accelerator we found the following
undocumented family of square-root friendly irreducible pentanomials:
f (x) = xm + xm−d + xm−2d + xd + 1.

all technical details of these designs can be found in the preprint
manuscripts eprint 2009/122 and eprint 2009/398

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (22 / 49)



Hardware implementation notes

Our Xilinx FPGA implementation, significantly improved the
computation time of all the hardware pairing coprocessors for
supersingular curves previously published

(a bit Surprisingly) our architecture also enjoys the best area/time
trade-off performance among supersingular pairing accelerators

However, because we exceeded the FPGA’s capacity, we could only
achieve up to 109 bits of security

Although it was not discussed here, we also implemented the Tate
pairing over char 2. Experimentally, we observed that our char 2 and
char 3 accelerators achieve almost the same time performance

In the design process of our char 2 accelerator we found the following
undocumented family of square-root friendly irreducible pentanomials:
f (x) = xm + xm−d + xm−2d + xd + 1.

all technical details of these designs can be found in the preprint
manuscripts eprint 2009/122 and eprint 2009/398

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (22 / 49)



Hardware implementation notes

Our Xilinx FPGA implementation, significantly improved the
computation time of all the hardware pairing coprocessors for
supersingular curves previously published

(a bit Surprisingly) our architecture also enjoys the best area/time
trade-off performance among supersingular pairing accelerators

However, because we exceeded the FPGA’s capacity, we could only
achieve up to 109 bits of security

Although it was not discussed here, we also implemented the Tate
pairing over char 2. Experimentally, we observed that our char 2 and
char 3 accelerators achieve almost the same time performance

In the design process of our char 2 accelerator we found the following
undocumented family of square-root friendly irreducible pentanomials:
f (x) = xm + xm−d + xm−2d + xd + 1.

all technical details of these designs can be found in the preprint
manuscripts eprint 2009/122 and eprint 2009/398

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (22 / 49)



Hardware implementation notes

Our Xilinx FPGA implementation, significantly improved the
computation time of all the hardware pairing coprocessors for
supersingular curves previously published

(a bit Surprisingly) our architecture also enjoys the best area/time
trade-off performance among supersingular pairing accelerators

However, because we exceeded the FPGA’s capacity, we could only
achieve up to 109 bits of security

Although it was not discussed here, we also implemented the Tate
pairing over char 2. Experimentally, we observed that our char 2 and
char 3 accelerators achieve almost the same time performance

In the design process of our char 2 accelerator we found the following
undocumented family of square-root friendly irreducible pentanomials:
f (x) = xm + xm−d + xm−2d + xd + 1.

all technical details of these designs can be found in the preprint
manuscripts eprint 2009/122 and eprint 2009/398

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (22 / 49)



Agenda

1 Context

2 Hardware accelerator for the Tate pairing over supersingular curves
Implementation Results in Hardware

3 Software accelerator for the Tate pairing over supersingular curves
Computing the non-reduced pairing
Final exponentiation
Implementation results

4 Optimal Ate Pairing over Barreto-Naehrig Curves
Barreto–Naehrig Curves

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (23 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates

Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation

Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

bar

foo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+

12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)

I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

ηT pairing: shorter loop

Based on Miller’s algorithm:

À update of point coordinates
Á computation of line equation
Â accumulation of the new factor

Multiplication is critical

Comb right-to-left multiplier over
F3m

for i ← 0 to (m − 1)/2 do

end for

yP ← 3
√
yP

yQ ← y 3QxQ ← x3Q

;
;

xP ← 3
√
xP

R ← R · S

t ← xP + xQ
S ← −t2 ± uσ − tρ− ρ2

u ← yPyQ

2 3
√
·

2 (·)3
yP ← 3

√
yP;

; yQ ← y 3Q

xP ← 3
√
xP

xQ ← x3Q
À

2×, 2 +Á ;t ← xP + xQ u ← yPyQ
S ← −t2 ± uσ − tρ− ρ2

1× (F36m)R ← R · SÂ

barfoo

15×, 29+12×, 59+

Sparse multiplication over F36m

I 15× and 29 + over F3m (Beuchat et al., ARITH 18)
I 12× and 59 + over F3m (Gorla et al., SAC 2007)

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (24 / 49)



Computing the non-reduced pairing

R ← R · S 12×, 59+
end for

Â

end for

for i ← 1 to (m − 1)/2 do

;
2 (·)3
2 3
√
·yP[i ]← 3

√
yP[i − 1]

yQ[i ]← yQ[i − 1]3
xP[i ]← 3

√
xP[i − 1]

xQ[i ]← xQ[i − 1]3
À

First core

;

Á

1×, 1 +
1×
1+

u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2

t ← xP[i ] + xQ[i ]

for i ← 1 to (m − 1)/2 do

1×
1×, 1 +

for i ← (m − 1)/4 + 1 to (m − 1)/2 do

t ← xP[i ] + xQ[i ]

Second core

12×, 59+
end for

R0← R0 · SÂ

Á

1+
u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2 1×, 1 +

Á

Â R1← R1 · S
end for

12×, 59+

for i ← 1 to (m − 1)/4 do

t ← xP[i ] + xQ[i ]

S ← −t2 ± uσ − tρ− ρ2
u ← yP[i ]yQ[i ]

1 +
1×

15×, 67+R ← R0 · R1

Á

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← 1 to (m − 1)/8 do

Á

Á

Á

1+
1×
1+

Á
u1← yP[2i ]yQ[2i ]
t1← xP[2i ] + xQ[2i ]
u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

t1← xP[2i ] + xQ[2i ]
u1← yP[2i ]yQ[2i ]

Á

1+
1×
1+
1×
8×, 13+

for i ← 1 to (m − 1)/8 do

Â 15×, 67+R0← R0 · S

(−t21 ± u1σ − t1ρ− ρ2)
S ← (−t20 ± u0σ − t0ρ− ρ2)·

end for

u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

S ← (−t20 ± u0σ − t0ρ− ρ2)·
(−t21 ± u1σ − t1ρ− ρ2)

15×, 67+R1← R1 · SÂ

end for

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

8×, 13+
1×

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (25 / 49)



Computing the non-reduced pairing

R ← R · S 12×, 59+
end for

Â

end for

for i ← 1 to (m − 1)/2 do

;
2 (·)3
2 3
√
·yP[i ]← 3

√
yP[i − 1]

yQ[i ]← yQ[i − 1]3
xP[i ]← 3

√
xP[i − 1]

xQ[i ]← xQ[i − 1]3
À

First core

;

Á

1×, 1 +
1×
1+

u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2

t ← xP[i ] + xQ[i ]

for i ← 1 to (m − 1)/2 do

1×
1×, 1 +

for i ← (m − 1)/4 + 1 to (m − 1)/2 do

t ← xP[i ] + xQ[i ]

Second core

12×, 59+
end for

R0← R0 · SÂ

Á

1+
u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2 1×, 1 +

Á

Â R1← R1 · S
end for

12×, 59+

for i ← 1 to (m − 1)/4 do

t ← xP[i ] + xQ[i ]

S ← −t2 ± uσ − tρ− ρ2
u ← yP[i ]yQ[i ]

1 +
1×

15×, 67+R ← R0 · R1

Á

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← 1 to (m − 1)/8 do

Á

Á

Á

1+
1×
1+

Á
u1← yP[2i ]yQ[2i ]
t1← xP[2i ] + xQ[2i ]
u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

t1← xP[2i ] + xQ[2i ]
u1← yP[2i ]yQ[2i ]

Á

1+
1×
1+
1×
8×, 13+

for i ← 1 to (m − 1)/8 do

Â 15×, 67+R0← R0 · S

(−t21 ± u1σ − t1ρ− ρ2)
S ← (−t20 ± u0σ − t0ρ− ρ2)·

end for

u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

S ← (−t20 ± u0σ − t0ρ− ρ2)·
(−t21 ± u1σ − t1ρ− ρ2)

15×, 67+R1← R1 · SÂ

end for

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

8×, 13+
1×

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (25 / 49)



Computing the non-reduced pairing

R ← R · S 12×, 59+
end for

Â

end for

for i ← 1 to (m − 1)/2 do

;
2 (·)3
2 3
√
·yP[i ]← 3

√
yP[i − 1]

yQ[i ]← yQ[i − 1]3
xP[i ]← 3

√
xP[i − 1]

xQ[i ]← xQ[i − 1]3
À

First core

;

Á

1×, 1 +
1×
1+

u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2

t ← xP[i ] + xQ[i ]

for i ← 1 to (m − 1)/2 do

1×
1×, 1 +

for i ← (m − 1)/4 + 1 to (m − 1)/2 do

t ← xP[i ] + xQ[i ]

Second core

12×, 59+
end for

R0← R0 · SÂ

Á

1+
u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2 1×, 1 +

Á

Â R1← R1 · S
end for

12×, 59+

for i ← 1 to (m − 1)/4 do

t ← xP[i ] + xQ[i ]

S ← −t2 ± uσ − tρ− ρ2
u ← yP[i ]yQ[i ]

1 +
1×

15×, 67+R ← R0 · R1

Á

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← 1 to (m − 1)/8 do

Á

Á

Á

1+
1×
1+

Á
u1← yP[2i ]yQ[2i ]
t1← xP[2i ] + xQ[2i ]
u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

t1← xP[2i ] + xQ[2i ]
u1← yP[2i ]yQ[2i ]

Á

1+
1×
1+
1×
8×, 13+

for i ← 1 to (m − 1)/8 do

Â 15×, 67+R0← R0 · S

(−t21 ± u1σ − t1ρ− ρ2)
S ← (−t20 ± u0σ − t0ρ− ρ2)·

end for

u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

S ← (−t20 ± u0σ − t0ρ− ρ2)·
(−t21 ± u1σ − t1ρ− ρ2)

15×, 67+R1← R1 · SÂ

end for

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

8×, 13+
1×

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (25 / 49)



Computing the non-reduced pairing

R ← R · S 12×, 59+
end for

Â

end for

for i ← 1 to (m − 1)/2 do

;
2 (·)3
2 3
√
·yP[i ]← 3

√
yP[i − 1]

yQ[i ]← yQ[i − 1]3
xP[i ]← 3

√
xP[i − 1]

xQ[i ]← xQ[i − 1]3
À

First core

;

Á

1×, 1 +
1×
1+

u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2

t ← xP[i ] + xQ[i ]

for i ← 1 to (m − 1)/2 do

1×
1×, 1 +

for i ← (m − 1)/4 + 1 to (m − 1)/2 do

t ← xP[i ] + xQ[i ]

Second core

12×, 59+
end for

R0← R0 · SÂ

Á

1+
u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2 1×, 1 +

Á

Â R1← R1 · S
end for

12×, 59+

for i ← 1 to (m − 1)/4 do

t ← xP[i ] + xQ[i ]

S ← −t2 ± uσ − tρ− ρ2
u ← yP[i ]yQ[i ]

1 +
1×

15×, 67+R ← R0 · R1

Á

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← 1 to (m − 1)/8 do

Á

Á

Á

1+
1×
1+

Á
u1← yP[2i ]yQ[2i ]
t1← xP[2i ] + xQ[2i ]
u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

t1← xP[2i ] + xQ[2i ]
u1← yP[2i ]yQ[2i ]

Á

1+
1×
1+
1×
8×, 13+

for i ← 1 to (m − 1)/8 do

Â 15×, 67+R0← R0 · S

(−t21 ± u1σ − t1ρ− ρ2)
S ← (−t20 ± u0σ − t0ρ− ρ2)·

end for

u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

S ← (−t20 ± u0σ − t0ρ− ρ2)·
(−t21 ± u1σ − t1ρ− ρ2)

15×, 67+R1← R1 · SÂ

end for

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

8×, 13+
1×

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (25 / 49)



Computing the non-reduced pairing

R ← R · S 12×, 59+
end for

Â

end for

for i ← 1 to (m − 1)/2 do

;
2 (·)3
2 3
√
·yP[i ]← 3

√
yP[i − 1]

yQ[i ]← yQ[i − 1]3
xP[i ]← 3

√
xP[i − 1]

xQ[i ]← xQ[i − 1]3
À

First core

;

Á

1×, 1 +
1×
1+

u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2

t ← xP[i ] + xQ[i ]

for i ← 1 to (m − 1)/2 do

1×
1×, 1 +

for i ← (m − 1)/4 + 1 to (m − 1)/2 do

t ← xP[i ] + xQ[i ]

Second core

12×, 59+
end for

R0← R0 · SÂ

Á

1+
u ← yP[i ]yQ[i ]
S ← −t2 ± uσ − tρ− ρ2 1×, 1 +

Á

Â R1← R1 · S
end for

12×, 59+

for i ← 1 to (m − 1)/4 do

t ← xP[i ] + xQ[i ]

S ← −t2 ± uσ − tρ− ρ2
u ← yP[i ]yQ[i ]

1 +
1×

15×, 67+R ← R0 · R1

Á

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R1← R1 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

1+
1×

1+
1×

1×, 1 +

12×, 59+

1×, 1 +

12×, 59+
end for

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i ]yQ[2i ]
t ← xP[2i ] + xQ[2i ]

Â R0← R0 · S

S ← −t2 ± uσ − tρ− ρ2
u ← yP[2i − 1]yQ[2i − 1]
t ← xP[2i − 1] + xQ[2i − 1]

for i ← 1 to (m − 1)/8 do

Á

Á

Á

1+
1×
1+

Á
u1← yP[2i ]yQ[2i ]
t1← xP[2i ] + xQ[2i ]
u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

t1← xP[2i ] + xQ[2i ]
u1← yP[2i ]yQ[2i ]

Á

1+
1×
1+
1×
8×, 13+

for i ← 1 to (m − 1)/8 do

Â 15×, 67+R0← R0 · S

(−t21 ± u1σ − t1ρ− ρ2)
S ← (−t20 ± u0σ − t0ρ− ρ2)·

end for

u0← yP[2i − 1]yQ[2i − 1]
t0← xP[2i − 1] + xQ[2i − 1]

S ← (−t20 ± u0σ − t0ρ− ρ2)·
(−t21 ± u1σ − t1ρ− ρ2)

15×, 67+R1← R1 · SÂ

end for

for i ← (m − 1)/8 + 1 to (m − 1)/4 do

8×, 13+
1×

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (25 / 49)



Agenda

1 Context

2 Hardware accelerator for the Tate pairing over supersingular curves
Implementation Results in Hardware

3 Software accelerator for the Tate pairing over supersingular curves
Computing the non-reduced pairing
Final exponentiation
Implementation results

4 Optimal Ate Pairing over Barreto-Naehrig Curves
Barreto–Naehrig Curves

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (26 / 49)



Final exponentiation

Final exponentiation consists of raising ê(P, Q) to the exponent,

M =
24m − 1

N
= (22m − 1) · (2m + 1− ν2(m+1)/2),

where ν = (−1)b when m ≡ 1, 7 (mod 8) and ν = (−1)1−b in all
other cases.

Highly sequential computation, Very heterogeneous

We perform this operation according to a slightly optimized version:
I Raising to the (2m + 1)-th power. Raising the outcome of Miller’s

algorithm to the
(
22m − 1

)
-th power produces an element U ∈ F24m of

order 22m + 1. This property allows one to save a multiplication over
F24m when raising U to the (2m + 1)-th power.

I Raising to the 2
m+1

2 -th power. raising an element of F24m to the 2i -th
power involves 4i squarings and at most four additions over F2m

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (27 / 49)



Final exponentiation

Final exponentiation consists of raising ê(P, Q) to the exponent,

M =
24m − 1

N
= (22m − 1) · (2m + 1− ν2(m+1)/2),

where ν = (−1)b when m ≡ 1, 7 (mod 8) and ν = (−1)1−b in all
other cases.

Highly sequential computation, Very heterogeneous

We perform this operation according to a slightly optimized version:
I Raising to the (2m + 1)-th power. Raising the outcome of Miller’s

algorithm to the
(
22m − 1

)
-th power produces an element U ∈ F24m of

order 22m + 1. This property allows one to save a multiplication over
F24m when raising U to the (2m + 1)-th power.

I Raising to the 2
m+1

2 -th power. raising an element of F24m to the 2i -th
power involves 4i squarings and at most four additions over F2m

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (27 / 49)



Final exponentiation

Final exponentiation consists of raising ê(P, Q) to the exponent,

M =
24m − 1

N
= (22m − 1) · (2m + 1− ν2(m+1)/2),

where ν = (−1)b when m ≡ 1, 7 (mod 8) and ν = (−1)1−b in all
other cases.

Highly sequential computation, Very heterogeneous

We perform this operation according to a slightly optimized version:
I Raising to the (2m + 1)-th power. Raising the outcome of Miller’s

algorithm to the
(
22m − 1

)
-th power produces an element U ∈ F24m of

order 22m + 1. This property allows one to save a multiplication over
F24m when raising U to the (2m + 1)-th power.

I Raising to the 2
m+1

2 -th power. raising an element of F24m to the 2i -th
power involves 4i squarings and at most four additions over F2m

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (27 / 49)



Final exponentiation

Final exponentiation consists of raising ê(P, Q) to the exponent,

M =
24m − 1

N
= (22m − 1) · (2m + 1− ν2(m+1)/2),

where ν = (−1)b when m ≡ 1, 7 (mod 8) and ν = (−1)1−b in all
other cases.

Highly sequential computation, Very heterogeneous

We perform this operation according to a slightly optimized version:
I Raising to the (2m + 1)-th power. Raising the outcome of Miller’s

algorithm to the
(
22m − 1

)
-th power produces an element U ∈ F24m of

order 22m + 1. This property allows one to save a multiplication over
F24m when raising U to the (2m + 1)-th power.

I Raising to the 2
m+1

2 -th power. raising an element of F24m to the 2i -th
power involves 4i squarings and at most four additions over F2m

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (27 / 49)



Finite field arithmetic

Target: multi-core architectures

Arithmetic over F2m and F3m : SSE instruction set

Timings are given in clock cycles and were measured on an Intel Core
2 processor working at 2.4 GHz.

Field xp p
√

x Mult

Aranha et al. CT-RSA’10 F21223 160 166 4030

Our work CANS’10
F21223 480 749 5438
F3509 900 974 4128

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (28 / 49)



Finite field arithmetic

Target: multi-core architectures

Arithmetic over F2m and F3m : SSE instruction set

Timings are given in clock cycles and were measured on an Intel Core
2 processor working at 2.4 GHz.

Field xp p
√

x Mult

Aranha et al. CT-RSA’10 F21223 160 166 4030

Our work CANS’10
F21223 480 749 5438
F3509 900 974 4128

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (28 / 49)



Finite field arithmetic

Target: multi-core architectures

Arithmetic over F2m and F3m : SSE instruction set

Timings are given in clock cycles and were measured on an Intel Core
2 processor working at 2.4 GHz.

Field xp p
√

x Mult

Aranha et al. CT-RSA’10 F21223 160 166 4030

Our work CANS’10
F21223 480 749 5438
F3509 900 974 4128

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (28 / 49)



Agenda

1 Context

2 Hardware accelerator for the Tate pairing over supersingular curves
Implementation Results in Hardware

3 Software accelerator for the Tate pairing over supersingular curves
Computing the non-reduced pairing
Final exponentiation
Implementation results

4 Optimal Ate Pairing over Barreto-Naehrig Curves
Barreto–Naehrig Curves

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (29 / 49)



Implementation results

Timings achieved on an Intel Core2 are given in millions of clock
cycles

Windows XP 64-bit SP2 environment

Curve
Security # of Freq. Calc.

[bits] cores [GHz] time [Mcycles]

E (F21223 ) 128 1 2.4 18.76
Aranha et al. E (F21223 ) 128 2 2.4 10.08
CT-RSA’10 E (F21223 ) 128 4 2.4 5.72

Our work
E (F3509 ) 128 1 2.4 18.2

CANS’10
E (F3509 ) 128 2 2.4 10.34
E (F3509 ) 128 4 2.4 7.06

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (30 / 49)



Implementation results

Timings achieved on an Intel Core2 are given in millions of clock
cycles

Windows XP 64-bit SP2 environment

Curve
Security # of Freq. Calc.

[bits] cores [GHz] time [Mcycles]

E (F21223 ) 128 1 2.4 18.76
Aranha et al. E (F21223 ) 128 2 2.4 10.08
CT-RSA’10 E (F21223 ) 128 4 2.4 5.72

Our work
E (F3509 ) 128 1 2.4 18.2

CANS’10
E (F3509 ) 128 2 2.4 10.34
E (F3509 ) 128 4 2.4 7.06

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (30 / 49)



Software implementation notes: The supersingular case

Significantly faster implementation (for a while)

How many cores?

I acceleration always less than the ideal speedup factor
I best choice: dual-core implementation

Characteristic 3 performs better than characteristic 2

I at least on Intel Core2 and Intel Core i7
I next generation of processors: built-in carry-less 64-bit multiplier
I the battle is not over!

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (31 / 49)



Software implementation notes: The supersingular case

Significantly faster implementation (for a while)

How many cores?

I acceleration always less than the ideal speedup factor
I best choice: dual-core implementation

Characteristic 3 performs better than characteristic 2

I at least on Intel Core2 and Intel Core i7
I next generation of processors: built-in carry-less 64-bit multiplier
I the battle is not over!

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (31 / 49)



Software implementation notes: The supersingular case

Significantly faster implementation (for a while)

How many cores?
I acceleration always less than the ideal speedup factor
I best choice: dual-core implementation

Characteristic 3 performs better than characteristic 2

I at least on Intel Core2 and Intel Core i7
I next generation of processors: built-in carry-less 64-bit multiplier
I the battle is not over!

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (31 / 49)



Software implementation notes: The supersingular case

Significantly faster implementation (for a while)

How many cores?
I acceleration always less than the ideal speedup factor
I best choice: dual-core implementation

Characteristic 3 performs better than characteristic 2

I at least on Intel Core2 and Intel Core i7
I next generation of processors: built-in carry-less 64-bit multiplier
I the battle is not over!

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (31 / 49)



Software implementation notes: The supersingular case

Significantly faster implementation (for a while)

How many cores?
I acceleration always less than the ideal speedup factor
I best choice: dual-core implementation

Characteristic 3 performs better than characteristic 2
I at least on Intel Core2 and Intel Core i7

I next generation of processors: built-in carry-less 64-bit multiplier
I the battle is not over!

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (31 / 49)



Software implementation notes: The supersingular case

Significantly faster implementation (for a while)

How many cores?
I acceleration always less than the ideal speedup factor
I best choice: dual-core implementation

Characteristic 3 performs better than characteristic 2
I at least on Intel Core2 and Intel Core i7
I next generation of processors: built-in carry-less 64-bit multiplier
I the battle is not over!

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (31 / 49)



Agenda

1 Context

2 Hardware accelerator for the Tate pairing over supersingular curves
Implementation Results in Hardware

3 Software accelerator for the Tate pairing over supersingular curves
Computing the non-reduced pairing
Final exponentiation
Implementation results

4 Optimal Ate Pairing over Barreto-Naehrig Curves
Barreto–Naehrig Curves

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (32 / 49)



Barreto–Naehrig Curves

Defined by the equation E : y2 = x3 + b, where b 6= 0. Their embedding
degree k is equal to 12. The characteristic p of the prime field, the group
order r , and the trace of Frobenius tr of the curve are parametrized as
follows:

p(t) = 36t4 + 36t3 + 24t2 + 6t + 1,

r(t) = 36t4 + 36t3 + 18t2 + 6t + 1, (1)

tr (t) = 6t2 + 1,

where t ∈ Z is an arbitrary integer such that p = p(t) and r = r(t) are
both prime numbers.
For efficiency purposes, t must have a low Hamming weight. In this work
we used,

t = 262 − 254 + 244

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (33 / 49)



Barreto–Naehrig Curves

Let E [r ] denote the r -torsion subgroup of E and πp be the Frobenius
endomorphism πp : E → E given by πp(x , y) = (xp, yp). We define,

G1 = E (Fp)[r ],

G2 ⊆ E (Fp12)[r ],

Gτ = µr ⊂ F∗p12 (i.e. the group of r -th roots of unity).

The optimal ate pairing on the BN curve E is given as,

aopt : G2 ×G1 −→ G3

(Q, P) 7−→
(
f6t+2,Q(P) · l[6t+2]Q,πp(Q)(P) ·

l[6t+2]Q+πp(Q),−π2
p(Q)(P)

) p12−1
r ,

In practice, pairing computations can be restricted to points P and Q ′

that belong to E (Fp) and E ′(Fp2), respectively, where,
E ′/Fp2 : y2 = x3 + b/ξ.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (34 / 49)



Optimal ate pairing algorithm
Input: P ∈ G1 y Q ∈ G2.
Output: aopt(Q, P).

1. Write s = 6t + 2 as s =
∑L−1

i=0 si2
i , where si ∈ {−1, 0, 1};

2. T ← Q, f ← 1;
3. for i = L− 2 to 0 do

4. f ← f 2 · lT ,T (P); T ← 2T ;
5. if si = −1 then
6. f ← f · lT ,−Q(P); T ← T − Q;
7. else if si = 1 then
8. f ← f · lT ,Q(P); T ← T + Q;
9. end if

10. end for
11. Q1 ← πp(Q); Q2 ← πp2(Q);
12. f ← f · lT ,Q1(P); T ← T + Q1;
13. f ← f · lT ,−Q2(P); T ← T − Q2;

14. f ← f (p12−1)/r ;
15. return f ;

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (35 / 49)



Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (36 / 49)

hence, we can write
f ∈ Fp12 as

f = g + hw

= g + hw

= g0 + h0W + g1W
2 +

h1W
3 + g2W

4 + h2W
5.

f = g + hw ∈ Fp12 ,
with g , h ∈ Fp6 .

but also
g = g0+g1v +g2v

2,
h = h0+h1v +h2v

2,
where gi , hi ∈ Fp2 ,
for i = 1, 2, 3.
β = −5

ξ = u

γ = v

Since p mod 12 ≡ 1 we can build the towering up to the twelfth
extension by adjoining irreducible binomial only.



Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (36 / 49)

hence, we can write
f ∈ Fp12 as

f = g + hw

= g + hw

= g0 + h0W + g1W
2 +

h1W
3 + g2W

4 + h2W
5.

f = g + hw ∈ Fp12 ,
with g , h ∈ Fp6 .

but also
g = g0+g1v +g2v

2,
h = h0+h1v +h2v

2,
where gi , hi ∈ Fp2 ,
for i = 1, 2, 3.
β = −5

ξ = u

γ = v

Since p mod 12 ≡ 1 we can build the towering up to the twelfth
extension by adjoining irreducible binomial only.



Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (36 / 49)

hence, we can write
f ∈ Fp12 as

f = g + hw

= g + hw

= g0 + h0W + g1W
2 +

h1W
3 + g2W

4 + h2W
5.

f = g + hw ∈ Fp12 ,
with g , h ∈ Fp6 .

but also
g = g0+g1v +g2v

2,
h = h0+h1v +h2v

2,
where gi , hi ∈ Fp2 ,
for i = 1, 2, 3.

β = −5

ξ = u

γ = v

Since p mod 12 ≡ 1 we can build the towering up to the twelfth
extension by adjoining irreducible binomial only.



Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (36 / 49)

hence, we can write
f ∈ Fp12 as

f = g + hw

= g + hw

= g0 + h0W + g1W
2 +

h1W
3 + g2W

4 + h2W
5.

f = g + hw ∈ Fp12 ,
with g , h ∈ Fp6 .

but also
g = g0+g1v +g2v

2,
h = h0+h1v +h2v

2,
where gi , hi ∈ Fp2 ,
for i = 1, 2, 3.

β = −5

ξ = u

γ = v

Since p mod 12 ≡ 1 we can build the towering up to the twelfth
extension by adjoining irreducible binomial only.



Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (36 / 49)

hence, we can write
f ∈ Fp12 as

f = g + hw

= g + hw

= g0 + h0W + g1W
2 +

h1W
3 + g2W

4 + h2W
5.

f = g + hw ∈ Fp12 ,
with g , h ∈ Fp6 .

but also
g = g0+g1v +g2v

2,
h = h0+h1v +h2v

2,
where gi , hi ∈ Fp2 ,
for i = 1, 2, 3.

β = −5

ξ = u

γ = v

Since p mod 12 ≡ 1 we can build the towering up to the twelfth
extension by adjoining irreducible binomial only.



Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (36 / 49)

hence, we can write
f ∈ Fp12 as

f = g + hw

= g + hw

= g0 + h0W + g1W
2 +

h1W
3 + g2W

4 + h2W
5.

f = g + hw ∈ Fp12 ,
with g , h ∈ Fp6 .

but also
g = g0+g1v +g2v

2,
h = h0+h1v +h2v

2,
where gi , hi ∈ Fp2 ,
for i = 1, 2, 3.

β = −5

ξ = u

γ = v

Since p mod 12 ≡ 1 we can build the towering up to the twelfth
extension by adjoining irreducible binomial only.



Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (36 / 49)

hence, we can write
f ∈ Fp12 as

f = g + hw

= g + hw

= g0 + h0W + g1W
2 +

h1W
3 + g2W

4 + h2W
5.

f = g + hw ∈ Fp12 ,
with g , h ∈ Fp6 .

but also
g = g0+g1v +g2v

2,
h = h0+h1v +h2v

2,
where gi , hi ∈ Fp2 ,
for i = 1, 2, 3.
β = −5

ξ = u

γ = v

Since p mod 12 ≡ 1 we can build the towering up to the twelfth
extension by adjoining irreducible binomial only.



Let (a, m, s, i), (ã, m̃, s̃, ĩ), and (A, M, S , I ) denote the cost of field
addition, multiplication, squaring, and inversion in Fp, Fp2 , and Fp6 ,
respectively

we sometimes need to compute the multiplication in the base field by
the constant coefficient β ∈ Fp of the irreducible binomial
f (u) = u2 − β. We refer to this operation as mβ

we sometimes need to compute the multiplication of an arbitrary
element in Fp2 times the constant ξ = u ∈ Fp at a cost of one
multiplication by the constant β. We refer to this operation as mξ,
but it is noticed that the cost of mξ is essentially the same of that of
mβ.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (37 / 49)



Computational costs of the tower extension field arithmetic

Field Add/Sub Mult Squaring Inversion

Fp2 ã = 2a m̃ = 3m + 3a + mβ s̃ = 2m + 3a + mβ
ĩ = 4m + mβ

+2a + i

Fp6 3ã 6m̃ + 2mξ + 15ã 2m̃ + 3s̃ + 2mξ + 8ã
9m̃ + 3s̃ + 4mξ

+4ã + ĩ

Fp12 6ã 18m̃ + 6mξ + 60ã 12m̃ + 4mξ + 45ã
25m̃ + 9s̃ + 12mξ

+61ã + ĩ

GΦ6(Fp2) 6ã 18m̃ + 6mξ + 60ã
9s̃ + 4mξ Conjugate

+30ã

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (38 / 49)



We took advantage of the following design decisions,

The bit-length of 6t + 2 is L = 65

I This implies that we require 64 point doubling in the Miller loop.

The Hamming weight of 6t + 2 is 7
I This implies that we require 6 point addition/subtraction in the Miller

loop.

The low Hamming weight of t allows us to save arithmetic operations
in the hard part of the final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (39 / 49)



We took advantage of the following design decisions,

The bit-length of 6t + 2 is L = 65
I This implies that we require 64 point doubling in the Miller loop.

The Hamming weight of 6t + 2 is 7
I This implies that we require 6 point addition/subtraction in the Miller

loop.

The low Hamming weight of t allows us to save arithmetic operations
in the hard part of the final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (39 / 49)



We took advantage of the following design decisions,

The bit-length of 6t + 2 is L = 65
I This implies that we require 64 point doubling in the Miller loop.

The Hamming weight of 6t + 2 is 7

I This implies that we require 6 point addition/subtraction in the Miller
loop.

The low Hamming weight of t allows us to save arithmetic operations
in the hard part of the final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (39 / 49)



We took advantage of the following design decisions,

The bit-length of 6t + 2 is L = 65
I This implies that we require 64 point doubling in the Miller loop.

The Hamming weight of 6t + 2 is 7
I This implies that we require 6 point addition/subtraction in the Miller

loop.

The low Hamming weight of t allows us to save arithmetic operations
in the hard part of the final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (39 / 49)



We took advantage of the following design decisions,

The bit-length of 6t + 2 is L = 65
I This implies that we require 64 point doubling in the Miller loop.

The Hamming weight of 6t + 2 is 7
I This implies that we require 6 point addition/subtraction in the Miller

loop.

The low Hamming weight of t allows us to save arithmetic operations
in the hard part of the final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (39 / 49)



Mille Loop Cost

Miller Loop = 64 · (28m̃ + 8s̃ + 100ã + 4m + 6mβ) +

6 · (20m̃ + 7s̃ + 64ã + 4m + 2mβ) +

40m̃ + 14s̃ + 128ã + 14m + 4mβ

= 1952m̃ + 568s̃ + 6912ã + 294m + 400mβ.

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (40 / 49)



Calculating the final Exponentiation

We must compute f ∈ Fp12 raised to the power e = (p12 − 1)/r

e =
p12 − 1

r
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

r
.

Raising to f (p6−1) = f̄ · f −1 costs one conjugation, one inversion and
one multiplication over Fp12 .

After this step, f becomes an element of the cyclotomic group
GΦ6(Fp2).

Raising to the power p2 + 1 costs 5 multiplications over Fp, and one
multiplication over Fp12 .

Raising to the power m(p4−p2+1)/r is referred as the hard part of the
final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (41 / 49)



Calculating the final Exponentiation

We must compute f ∈ Fp12 raised to the power e = (p12 − 1)/r

e =
p12 − 1

r
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

r
.

Raising to f (p6−1) = f̄ · f −1 costs one conjugation, one inversion and
one multiplication over Fp12 .

After this step, f becomes an element of the cyclotomic group
GΦ6(Fp2).

Raising to the power p2 + 1 costs 5 multiplications over Fp, and one
multiplication over Fp12 .

Raising to the power m(p4−p2+1)/r is referred as the hard part of the
final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (41 / 49)



Calculating the final Exponentiation

We must compute f ∈ Fp12 raised to the power e = (p12 − 1)/r

e =
p12 − 1

r
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

r
.

Raising to f (p6−1) = f̄ · f −1 costs one conjugation, one inversion and
one multiplication over Fp12 .

After this step, f becomes an element of the cyclotomic group
GΦ6(Fp2).

Raising to the power p2 + 1 costs 5 multiplications over Fp, and one
multiplication over Fp12 .

Raising to the power m(p4−p2+1)/r is referred as the hard part of the
final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (41 / 49)



Calculating the final Exponentiation

We must compute f ∈ Fp12 raised to the power e = (p12 − 1)/r

e =
p12 − 1

r
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

r
.

Raising to f (p6−1) = f̄ · f −1 costs one conjugation, one inversion and
one multiplication over Fp12 .

After this step, f becomes an element of the cyclotomic group
GΦ6(Fp2).

Raising to the power p2 + 1 costs 5 multiplications over Fp, and one
multiplication over Fp12 .

Raising to the power m(p4−p2+1)/r is referred as the hard part of the
final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (41 / 49)



Calculating the final Exponentiation

We must compute f ∈ Fp12 raised to the power e = (p12 − 1)/r

e =
p12 − 1

r
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

r
.

Raising to f (p6−1) = f̄ · f −1 costs one conjugation, one inversion and
one multiplication over Fp12 .

After this step, f becomes an element of the cyclotomic group
GΦ6(Fp2).

Raising to the power p2 + 1 costs 5 multiplications over Fp, and one
multiplication over Fp12 .

Raising to the power m(p4−p2+1)/r is referred as the hard part of the
final exponentiation

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (41 / 49)



Hard part of the final exponentiation

We used the addition chain proposed by Scott et al. at Pairing’09

mt , mt2
, mt3

, mp, mp2
, mp3

, m(tp), m(t2p), m(t3p), m(t2p2),

Taking advantage of the Frobenius, we can easily compute, mp, mp2
,

mp3
, m(tp), m(t2p), m(t3p), y m(t2p2) at a cost of 35 multiplications in

the base field Fp.

The most costly part of this procedure consists on the computation of
mt , mt2

= (mt)t , mt3
= (mt2

)t .

Since t = 262 − 254 + 244, these exponentiations can be computed at
a cost of 62 · 3 = 186 cyclotomic squarings plus 2 · 3 = 6
multiplications over Fp12 .

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (42 / 49)



Hard part of the final exponentiation

We used the addition chain proposed by Scott et al. at Pairing’09

mt , mt2
, mt3

, mp, mp2
, mp3

, m(tp), m(t2p), m(t3p), m(t2p2),

Taking advantage of the Frobenius, we can easily compute, mp, mp2
,

mp3
, m(tp), m(t2p), m(t3p), y m(t2p2) at a cost of 35 multiplications in

the base field Fp.

The most costly part of this procedure consists on the computation of
mt , mt2

= (mt)t , mt3
= (mt2

)t .

Since t = 262 − 254 + 244, these exponentiations can be computed at
a cost of 62 · 3 = 186 cyclotomic squarings plus 2 · 3 = 6
multiplications over Fp12 .

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (42 / 49)



Hard part of the final exponentiation

We used the addition chain proposed by Scott et al. at Pairing’09

mt , mt2
, mt3

, mp, mp2
, mp3

, m(tp), m(t2p), m(t3p), m(t2p2),

Taking advantage of the Frobenius, we can easily compute, mp, mp2
,

mp3
, m(tp), m(t2p), m(t3p), y m(t2p2) at a cost of 35 multiplications in

the base field Fp.

The most costly part of this procedure consists on the computation of
mt , mt2

= (mt)t , mt3
= (mt2

)t .

Since t = 262 − 254 + 244, these exponentiations can be computed at
a cost of 62 · 3 = 186 cyclotomic squarings plus 2 · 3 = 6
multiplications over Fp12 .

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (42 / 49)



Final exponentiation computational cost

Exp. Final = (25m̃ + 9s̃ + 12mβ + 61ã + ĩ) + (18m̃ + 6mβ + 60ã) +

(18m̃ + 6mβ + 60ã) + 10m +

13 · (18m̃ + 6mβ + 60ã) + 4 · (9s̃ + 4mβ + 30ã) + 70m +

186 · (9s̃ + 4mβ + 30ã) + 6 · (18m̃ + 6mβ + 60ã)

= 403m̃ + 1719s̃ + 7021ã + 80m + 898mβ + ĩ .

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (43 / 49)



A Comparison of arithmetic operations required by the
computation of the ate pairing variants.

m̃ s̃ ã ĩ mξ

Hankerson et al. [Book chapter, 2007]
Miller Loop 2277 356 6712 1 412

R-ate pairing
Final Exp. 1616 1197 8977 1 1062

Total 3893 1553 15689 2 1474

Naehrig et al. [LatinCrypt 2010]
Miller Loop 2022 590 7140 410

Optimal ate pairing
Final Exp. 678 1719 7921 1 988

Total 2700 2309 15061 1 1398

This work [Pairing 2010]
Miller Loop 1954 568 6912 400

Optimal ate pairing
Final Exp 443 1719 7021 1 898

Total 2397 2287 13933 1 1298

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (44 / 49)



Library Implementation

We use the mul operation included in the x86-64 instruction set. It
multiplies two 64-bit unsigned integers in about 3 clock cycles on
Intel Core i7 and AMD Opteron processors

An element x ∈ Fp is represented as x = (x3, x2, x1, x0), where
xi , 0 ≤ i ≤ 3, are 64-bit integers

Multiplication and inversion over Fp are accomplished according to
the well-known Montgomery multiplication and Montgomery inversion
algorithms, respectively

The 256-bit integer multiplication and Montgomery reduction are
computed in 55 and 100 clock cycles, respectively

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (45 / 49)



Cycle counts of multiplication over Fp2, squaring over Fp2,
and optimal ate pairing on different machines

Our results

Core i7a Opteronb Core 2 Duoc Athlon 64 X2d

Multiplication over Fp2 435 443 558 473

Squaring over Fp2 342 355 445 376

Miller loop 1,330,000 1,360,000 1,680,000 1,480,000

Final exponentiation 1,000,000 1,040,000 1,270,000 1,150,000

Optimal ate pairing 2,330,000 2,400,000 2,950,000 2,630,000

a Intel Core i7 860 (2.8GHz), Windows 7, Visual Studio 2008 Professional
b Quad-Core AMD Opteron 2376 (2.3GHz), Linux 2.6.18, gcc 4.4.1
c Intel Core 2 Duo T7100 (1.8GHz), Windows 7, Visual Studio 2008 Professional
d Athlon 64 X2 Dual Core 6000+(3GHz), Linux 2.6.23, gcc 4.1.2
e Intel Core 2 Quad Q6600 (2394MHz), Linux 2.6.28, gcc 4.3.3

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (46 / 49)



Comparison Table

A comparison of cycles and timings required by the computation of the ate
pairing variants. The frequency is given in GHz and the timings are in
milliseconds.

Alg. Architecture Cycles Freq.
Calc.
time

Aranha et al. [CT-RSA 2010] ηT
Intel Xeon 45nm (1 core) 17,400,000

2.0
8.70

Intel Xeon 45nm (8 cores) 3,020,000 1.51

Beuchat et al. [CANS 2009] ηT
Intel Core i7 (1 core) 15,138,000

2.9
5.22

Intel Core i7 (8 cores) 5,423,000 1.87

Hankerson et al. R-ate Intel Core 2 10,000,000 2.4 4.10

Naehrig et al. eprint 2010/526, April.6.2010 aopt Intel Core 2 Quad Q6600 4,470,000 2.4 1.80

Fan et al. CHES’09 “R-ate” 130 nm ASIC 59,976 .204 2.91

This Work eprint 2010/526, jun.17.2010 aopt Intel Core i7 2,330,000 2.8 0.83

Aranha et al. eprint 2010/526, oct.19.2010 aopt Intel Core i7 1,703,000 2.8 0.608

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (47 / 49)



Software Implementation notes on ordinary curves

records do not last long in software!

However, in hardware the performance records hold longer: Fan et al.
CHES’09 and Beuchat et al. CHES’09 are still the fastest hardware
accelerators for ordinary and supersingular curves, respectively.

Future projects/open problems,
I To target higher security levels in software implementation of pairings

(e.g, 192 bits of security)
I To design a hardware accelerator faster than any software library for

asymmetric pairings over BN curves at 128-bit of security
I to implement efficient pairing-based protocols in software and/or

hardware

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (48 / 49)



Software Implementation notes on ordinary curves

records do not last long in software!
However, in hardware the performance records hold longer: Fan et al.
CHES’09 and Beuchat et al. CHES’09 are still the fastest hardware
accelerators for ordinary and supersingular curves, respectively.

Future projects/open problems,
I To target higher security levels in software implementation of pairings

(e.g, 192 bits of security)
I To design a hardware accelerator faster than any software library for

asymmetric pairings over BN curves at 128-bit of security
I to implement efficient pairing-based protocols in software and/or

hardware

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (48 / 49)



Software Implementation notes on ordinary curves

records do not last long in software!
However, in hardware the performance records hold longer: Fan et al.
CHES’09 and Beuchat et al. CHES’09 are still the fastest hardware
accelerators for ordinary and supersingular curves, respectively.

Future projects/open problems,
I To target higher security levels in software implementation of pairings

(e.g, 192 bits of security)

I To design a hardware accelerator faster than any software library for
asymmetric pairings over BN curves at 128-bit of security

I to implement efficient pairing-based protocols in software and/or
hardware

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (48 / 49)



Software Implementation notes on ordinary curves

records do not last long in software!
However, in hardware the performance records hold longer: Fan et al.
CHES’09 and Beuchat et al. CHES’09 are still the fastest hardware
accelerators for ordinary and supersingular curves, respectively.

Future projects/open problems,
I To target higher security levels in software implementation of pairings

(e.g, 192 bits of security)
I To design a hardware accelerator faster than any software library for

asymmetric pairings over BN curves at 128-bit of security

I to implement efficient pairing-based protocols in software and/or
hardware

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (48 / 49)



Software Implementation notes on ordinary curves

records do not last long in software!
However, in hardware the performance records hold longer: Fan et al.
CHES’09 and Beuchat et al. CHES’09 are still the fastest hardware
accelerators for ordinary and supersingular curves, respectively.

Future projects/open problems,
I To target higher security levels in software implementation of pairings

(e.g, 192 bits of security)
I To design a hardware accelerator faster than any software library for

asymmetric pairings over BN curves at 128-bit of security
I to implement efficient pairing-based protocols in software and/or

hardware

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (48 / 49)



Software Implementation notes on ordinary curves

records do not last long in software!
However, in hardware the performance records hold longer: Fan et al.
CHES’09 and Beuchat et al. CHES’09 are still the fastest hardware
accelerators for ordinary and supersingular curves, respectively.

Future projects/open problems,
I To target higher security levels in software implementation of pairings

(e.g, 192 bits of security)
I To design a hardware accelerator faster than any software library for

asymmetric pairings over BN curves at 128-bit of security
I to implement efficient pairing-based protocols in software and/or

hardware

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (48 / 49)



Thank you for your attention

Questions?

Francisco Rodŕıguez-Henŕıquez Faster Implementation of Pairings (49 / 49)


	Context
	Hardware accelerator for the Tate pairing over supersingular curves
	Implementation Results in Hardware

	Software accelerator for the Tate pairing over supersingular curves
	Computing the non-reduced pairing
	Final exponentiation
	Implementation results

	Optimal Ate Pairing over Barreto-Naehrig Curves
	Barreto--Naehrig Curves


